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1. Introduction

This paper is intended to draw attention to some questions about the curvature of n-
dimensional Euclidean space embedded in m-dimensional space. The cases {n = 2,m = 3}
and {n = 1} have been extensively studied. However, for {n ≥ 2,m ≥ 4} the geometry
seems to be interesting yet largely unexplored. The paper states some conjectures and
questions but gives no proofs.

2. One-Dimensional Space

The case of E1 embedded in Em is just a curve parameterized by length running through m-
dimensional Euclidean space. As long as the curve is never straight, its shape is completely
determined by its curvature and the higher derivatives of the trajectory of a point traversing
the curve [2]. Note that the direction of curvature and torsion is always relative to the
curve and not specified using the coordinate system of the embedding space.

It is also worth mentioning that embedding E1 in E3 compared to E2 gives more interesting
shapes (spirals and knots). Once we go to E4 and higher there no longer are knots.

3. Two-Dimensional Space in E3

Two-dimensional surfaces in three-space are extensively studied [1]. At each point there are
directions of principal curvature in which the curvature is maximized/minimized. When
the surface is Euclidean, it can curve only in one principal direction and has to be straight in
the orthogonal direction. If the surface is infinite its principal directions form an orthogonal
grid and globally there is one direction in which the shape of the surface has to be straight.
Famously, if we hold a slice of pizza in a curved shape, it will not droop down along the
spine of the curve. If a fourth dimension were available, the pizza would droop into that
dimension but in 3D there is a nice non-local property of rigidity. We can focus on the
magnitude of the curvature and avoid mentioning its direction since at every point there
is only one direction that is orthogonal to the surface.
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4. Two-Dimensional Space in Higher Dimensions

Once a two-dimensional surface is embedded in E4 or higher we have to pay attention
to the direction as well as the magnitude of the curvature. At each point on the surface
the orthogonal space is multi-dimensional so the curvature should be considered a vector.
For the case of E1 embedded in higher dimensional spaces there is only one curvature
associated with each point so it is ok to focus just on the magnitude of that curvature (up
to a change of sign). For the curve there can be no confusion about different directions
for different curvatures at a point. On the two-dimensional surface there are multiple
curvatures associated with every point depending on which direction we face on the surface.
The external directions of these curvatures become relevant.

5. Theorema Egregium

For the case of E2 in E3, Gauss’ Theorema Egregium specifies that at each point the
curvature in one principal direction times the curvature in the other (orthogonal) principal
direction is 0. In higher dimensions the directions of principal curvature are not obvious
so we consider torsion as well as curvature.

6. Torsion and Warp

Assume a coordinate system on E2 so that at the origin there is maximum positive curvature
in the x direction and 0 curvature in the y direction. Locally at the origin the space is
shaped like a cylinder curving around the y axis. Now consider a line through the origin
that is not horizontal or vertical. That line has some positive curvature but also torsion.
Locally it has the shape of a helix inscribed in the curved space. Depending on the angle
of the line it has more or less torsion. The line y = x has the most torsion and the line
y = −x has the same magnitude of torsion but in the opposite direction. It is tempting
to think of the torsion as clockwise or counterclockwise but more accurate to think of it
pointing in the x or −x direction. If the curvature were along the y direction instead of
the x direction the torsion would then be in the y direction.

Quantitatively, assume the line makes angle θ with the x axis and κ is the curvature along
the x axis. The curvature (at the origin) along our line is a vector perpendicular to the
space with length κ cos2(θ). The torsion on the line (at the origin) is a vector in the x
direction with length κ sin(θ) cos(θ). The warp vector along the line (at the origin) is the
sum of the curvature and torsion vectors. If we calculate the warp along the perpendicular
line through the origin (at an angle of θ + π/2) we find that the second warp vector is
perpendicular to the first one.

We can say that in E2 if we take any two perpendicular lines, the two warp vectors asso-
ciated with the intersection point have dot product 0.
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7. Orthogonal Warp Principle

The higher dimensional analog to the Theorema Egregium is the Orthogonal Warp Prin-
ciple.

Let P be a point in the space En embedded in Em. Let ~x1, ~x2, ... ~xn be mutually orthog-
onal vectors starting from P (in the n-dimensional tangent space at P ). Let ~c1, ~c2, ... ~cn
be the curvatures at P for the directions ~x1, ~x2, ... ~xn respectively. These vectors are all
perpendicular to En at P . Let ~t1, ~t2, ...~tn be the associated torsion vectors. The torsion
vectors are each perpendicular to the curvature vectors. The warp vectors ~w1, ~w2, ... ~wn are
~c1 + ~t1, ~c2 + ~t2, ... ~cn + ~tn respectively.

Because En is intrinsically flat, ~wi · ~wj = 0 | i 6= j. The warp vectors are pairwise orthogonal

or ~0. (Certainly if m < 2n and we happen to have picked principal curvature directions

without torsion, then some of the warps must be ~0.)

8. Frames and Field Lines

When En is embedded in Em and m ≤ 2n there will generally be principal curvature
directions within En, directions in which the warp is purely curvature without torsion. At
every point the mutually orthogonal directions of principal curvature form a frame. As the
point moves, the frame might rotate and twist. If we move in one of the principal directions,
the frame might rotate a bit so that principal direction traces out an arc in En. We call
such an arc a field line. For example, on the surface of a cone, the field lines are straight
lines toward the apex of the cone and circular arcs perpendicular to the straight lines. The
field lines curve when there is a gradient in the extrinsic curvature in the direction of the
field line. If the extrinsic curvature of the space along field line F is ~c and the gradient
of curvatures along lines parallel to F is F⊥, the curvature of F itself within the space is
‖~c‖F⊥. In general these field lines can weave through the space while intersecting at right
angles. It would be nice to characterize more precisely what these field lines can do.

9. Slices

When En is embedded in Em we can also investigate Euclidean “flat” subspaces of En and
ask about the curvature of such slices. We have Eq embedded in En without any curvature
but Eq is curved within Em. We see that the directions of principal curvature from En

need not lie within Eq even though in some sense all the curvature of Eq is inherited from
En. Studying two dimensional slices of a curved higher dimensional Euclidean space seems
like a slightly easier way to “visualize” the curvature of the space.

10. Topology

A topological question that comes to mind is the status of higher-dimensional knots;
embedded Euclidean surfaces that cannot be transformed into each other without self-
intersections. The transformation in this case would consist of changes in curvature.
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