
8

ange

ions
heir
tent
one
ans

types.
port
for-
that

ions
, this

new

e

st-

nsee
se to
ay.

it did
mon
Proposal for Extension of JavaTM Floating Point
Semantics, Revision 1, May 199

Introduction and Scope

Prompted by feedback from several partners in the industry, Sun is proposing a ch
to the specification of floating-point in the Java programming language.

The current Java programming language and virtual machine specificat
require that all single and double precision floating-point calculations must round t
results to the IEEE 754 single and double precision formats, respectively. The in
of this proposed change is to permit additional floating-point calculations to be d
using IEEE 754 extended precision formats. Informally, extended precision me
precision that is at least as great as that required by Java programming language

By making this change, processors that more naturally and efficiently sup
extended precision formats and floating-point operations on extended precision
mats can deliver better performance for floating-point calculations. Processors
naturally and efficiently implement IEEE 754 single and double precision operat
as previously mandated by the specifications may continue to do so. In particular
proposal does not invalidate theclass file format. Any Java virtual machine imple-
mentation that conforms to the current specification conforms to the proposed
specification.

The proposal affects both the definition of the Java programming language, inThe
Java Language Specification, by Gosling, Joy, and Steele, and the definition of th
Java virtual machine, inThe Java Virtual Machine Specification, by Lindholm and
Yellin. In addition, the proposal implies changes for Java platform compatibility te
ing and for compilers for the Java programming language.

Summary of Changes in Revision 1 of Proposal

The present document is a first revision to a proposal originally released for lice
review on March 2, 1998. The changes incorporated in this revision are in respon
feedback gathered during the review and at JavaSoft’s March 23, 1998 Licensee D

In broad terms, the licensees responding to the original proposal argued that
not extend Java floating-point far enough to regain expected performance on com
1

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS2

inued

icate

point
float-

non-
o the
not

to be

ide
over-

ting-
nt.
ectly
ntors
ple-

the
edi-

stored
sed for

gle-
preci-
nent
lower
754
cases like loops, method invocations, or inlined code. They also demanded cont
access to bit-for-bit write-once-run-anywhere floating-point semantics.

In response to this feedback, two new keywords have been introduced to ind
whether a class or method is to be treated asFP-wideor FP-strict. For code that is FP-
wide implementations are permitted, but are not required, to use extended floating-
formats as described in the IEEE 754 standard. Implementations that use extended
ing-point formats are permitted to convert values freely between extended and
extended formats, in certain defined contexts. Code that is FP-strict must conform t
floating-point semantics historically required of all Java programs. Code that is
declared to be either FP-wide or FP-strict, including legacy code, are interpreted
implicitly FP-wide.

Code that is FP-wide and code that is FP-strict may be freely mixed. An FP-w
method can be invoked from FP-strict code and vice versa; an FP-wide method can
ride an FP-strict method and vice versa; and so on.

The revised proposal requires that an implementation provide an FP-strict floa
point mode. Future floating-point compatibility testing will become increasingly stringe
Existing implementations that pass current conformance tests but that do not corr
implement the specifications may fail these more stringent tests. Notes to impleme
targeting Intel Architecture CPUs are provided in this revision to help ensure that im
mentations on that platform are conformant.

This revision permits additional use of the extended floating-point formats. Where
previous proposal only permitted extended floating-point formats to be used for interm
ate values of expressions, this revision also permits values in extended formats to be
in local variables and passed as method parameters. Extended formats cannot be u
fields or array components.

IEEE 754 Floating-point Formats

The IEEE 754 standard defines four different floating-point formats: single, double, sin
extended, and double-extended. Single precision occupies a single 32-bit word, double
sion two consecutive 32-bit words. An extended format offers extra precision and expo
range over the associated non-extended format. The IEEE standard only specifies a
bound on how many extra bits extended precision provides. The details of the IEEE
floating-point formats are as specified in the following table:

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 3

ne in

a vir-
will
type

t

sup-

ting-
Where applied to the Java programming language or the Java virtual machi
this document, IEEE 754 single format will be referred to asfloat format, and IEEE
754 single-extended format will be referred to asfloat-extended format, to emphasize
the relationship between the format and the Java programming language or Jav
tual machine primitive data type. IEEE 754 double and double-extended formats
be referred to using the IEEE 754 names. To avoid confusion between the data
and the format of the same name, the data type will always be written incode font, as
it is in The Java Language SpecificationandThe Java Virtual Machine Specification.
Floating-point formats will always be written in normal font.

Proposed Changes to the Java Language Specification

Section 3.9, Keywords

Two keywords are added:widefp andstrictfp. This is an incompatible change in tha
any Java program that uses eitherwidefp or strictfp as an identifier will no longer be
supported. Likewise, any Java program that uses these new keywords will not be
ported by older compilers.

Section 4.2.3, Floating-Point Types and Values

The Java programming language requires every implementation to support two floa
point formats, called float and double, which are documented in Section 4.2.3 ofThe

Format

Parameter Single Single-extended Double Double-extended

Number of
significant bits

24 ≥ 32 53 ≥ 64

Maximum exponent +127 ≥ +1023 +1023 ≥ +16383

Minimum exponent −126 ≤ −1022 −1022 ≤ −16382

Exponent width in
bits

8 ≥ 11 11 ≥ 15

Format width in bits 32 ≥ 43 64 ≥ 79

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS4

ec-

two
oes,
, and

d and

ple-

an

uble

not
ble-
here

ither

ions
Java Language Specificationto be identical to IEEE 754 single and double formats, resp
tively.

An implementation of the Java programming language may, at its option, support
additional floating-point formats, called float-extended and double-extended. If it d
then for that implementation there are specific constants fp, femax, femin, dp, demax
demin such that:

fp ≥32 dp≥ 64
femax≥ 1023 demax≥ 16383
femin≤ −1022 demin≤ −16382

These constraints are identical to those specified by IEEE 754 for single-extende
double-extended formats.

The finite nonzero values of the float-extended format, if it is supported by an im
mentation, are of the form s·m·2e, where s is+1 or−1, m is a positive integer less than 2fp,
and e is an integer between femin−fp+1 and femax−fp+1, inclusive. Values of that form
such that m is positive but less than 2fp and e is equal to femin−fp+1 are said to be denor-
malized.

The finite nonzero values of the double-extended format, if it is supported by
implementation, are of the form s·m·2e, where s is+1 or −1, m is a positive integer less
than 2dp, and e is an integer between demin−dp+1 and demax−dp+1, inclusive. Values of
that form such that m is positive but less than 2dp and e is equal to demin−dp+1 are said to
be denormalized.

Note that the constraints permit the float-extended format to be identical to the do
format or to the double-extended format.

Note that float, float-extended, double, and double-extended are “formats” and
“types”. The float-extended format may be used instead of float format, and the dou
extended format may be used instead of double format, according to rules described
and in Chapters 5, 14, and 15.

Every expression, parameter declaration, and local variable declaration is e
explicitly FP-wide, explicitly FP-strict, or implicitly FP-wide.

Consider an expression, parameter declaration, or local variable declarationE; then
consider the setD of all class declarations, interface declarations, and method declarat
that containE.

If no construct in the setD bears either thewidefp modifier or thestrictfp modifier,
thenE is implicitly FP-wide.

Otherwise, there must be one particular declarationd in D that bears either thewidefp
modifier or thestrictfp modifier and is contained in every other declaration inD that
bears either thewidefp modifier or thestrictfp modifier. If d bears thewidefp modifier,

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 5

plic-

plic-

plic-
tion
y be
and

ated

of
ations,
. Sim-

sion

t its
on-
tical
fini-

may,
nd-
vely,
t but
so be
rting

t its
that
thenE is explicitly FP-wide; ifd bears thestrictfp modifier, thenE is explicitly FP-
strict.

An expression, parameter declaration, or local variable declaration that is ex
itly FP-wide will be treated as FP-wide.

An expression, parameter declaration, or local variable declaration that is ex
itly FP-strict will be treated as FP-strict.

An expression, parameter declaration, or local variable declaration that is im
itly FP-wide is normally treated as FP-wide, but in some programming or execu
environments, it may be that a compiler command switch or a separate tool ma
used to direct that every implicitly FP-wide expression, parameter declaration,
local variable declaration in a particular class, interface, or compilation unit be tre
as FP-strict.

Less formally but more intuitively, we will refer to classes, methods, or bodies
code as being treated as FP-wide when all of the expressions, parameter declar
or local variable declarations of the class, method or code are treated as FP-wide
ilarly, classes, methods, or code may be said to be treated as FP-strict.

Section 5.1.8, Format Conversion

A new kind of conversion is introduced that is not a type conversion, but a conver
between representations used for the same type.

Within an FP-wide expression,format conversionallows an implementation, at its
option, to perform any of the following operations on a value:

• If the value is represented in float format, then the implementation may, a
option, convert the value from float format to float-extended format. (Note that c
verting from float format to float-extended format does not alter the mathema
value represented. In particular, NaNs remain NaNs and infinities remain in
ties.)

• If the value is represented in float-extended format, then the implementation
at its option, convert the value from float-extended format to float format (rou
ing, if necessary, to the nearest representable value in float format). Alternati
the implementation may, at its option, keep the value in float-extended forma
round the value to the nearest representable value in float format (this may al
regarded as converting the value to float format with rounding and then conve
back to float-extended format).

• If the value is represented in double format, then the implementation may, a
option, convert the value from double format to double-extended format. (Note

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS6

mat-
fini-

ay, at
ing,
, the
und
arded
k to

pre-
epre-
uble-
value
le or
eter is
ethod
-wide
in an

riable
at to

able
ended
float

r that
ouble

iable
uble-
converting from double format to double-extended format does not alter the mathe
ical value represented. In particular, NaNs remain NaNs and infinities remain in
ties.)

• If the value is represented in double-extended format, then the implementation m
its option, convert the value from double-extended format to double format (round
if necessary, to the nearest representable value in double format). Alternatively
implementation may, at its option, keep the value in double-extended format but ro
the value to the nearest representable value in double format (this may also be reg
as converting the value to double format with rounding and then converting bac
double-extended format).

Within an FP-strict expression, format conversion always converts a value that is re
sented in float-extended format to float format (rounding, if necessary, to the nearest r
sentable value in float format) and always converts a value that is represented in do
extended format to double format (rounding, if necessary, to the nearest representable
in double format). Such conversion is necessary only when the value of a local variab
method parameter is accessed, the declaration of that local variable or method param
FP-wide, and the implementation has chosen to represent the local variable or m
parameter in an extended format; or when a method is invoked whose declaration is FP
and the implementation has chosen to represent the result of the method invocation
extended format.

Format conversion leaves unchanged any value whose type is neitherfloat nordou-
ble.

Section 5.2, Assignment Conversion

If a variable is represented in float-extended format, assignment conversion for that va
always automatically converts a value to be assigned that is represented in float form
float-extended format.

If a variable is represented in float format, assignment conversion for that vari
always automatically converts a value to be assigned that is represented in float-ext
format to float format (rounding, if necessary, to the nearest representable value in
format).

If a variable is represented in double-extended format, assignment conversion fo
variable always automatically converts a value to be assigned that is represented in d
format to double-extended format.

If a variable is represented in double format, assignment conversion for that var
always automatically converts a value to be assigned that is represented in do

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 7

ntable

ation
assed

tion
o be
ormat

thod
alue
ended

tion
o be
format

nd.

d to
is
tation
n, are
extended format to double format (rounding, if necessary, to the nearest represe
value in double format).

Section 5.3, Method Invocation Conversion

If a formal method parameter is represented in float-extended format, method invoc
conversion for that method parameter always automatically converts a value to be p
as a parameter that is represented in float format to float-extended format.

If a formal method parameter is represented in float format, method invoca
conversion for that method parameter always automatically converts a value t
passed as a parameter that is represented in float-extended format to float f
(rounding, if necessary, to the nearest representable value in float format).

If a formal method parameter is represented in double-extended format, me
invocation conversion for that method parameter always automatically converts a v
to be passed as a parameter that is represented in double format to double-ext
format.

If a formal method parameter is represented in double format, method invoca
conversion for that method parameter always automatically converts a value t
passed as a parameter that is represented in double-extended format to double
(rounding, if necessary, to the nearest representable value in double format).

Section 5.6.1, Unary Numeric Promotion

Unary numeric promotion performs format conversion (section 5.1.8) on the opera

Section 5.6.2, Binary Numeric Promotion

After performing binary numeric promotion where the two operands are converte
type float or to typedouble within an FP-wide expression, format conversion
applied separately to each operand, but subject to the constraint that the implemen
must make its choices in such a way that the two operands, after format conversio
represented in the same format.

Section 8.1.2, Class Modifiers

A ClassModifiermay be eitherwidefp or strictfp. A compile-time error occurs if
bothwidefp andstrictfp appear as class modifiers in the same class declaration.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS8

rmat

is
-

-
-
n is

n a

e

on.
Section 8.3, Field Declarations

A field of typefloat is always represented in float format. A field of typedouble is always
represented in double format. It is not permitted to represent a field in float-extended fo
or double-extended format.

Section 8.4.1, Formal Parameters

A method parameter of typefloat is always represented in float format if its declaration
FP-strict. A method parameter of typefloat may be represented in float format or in float
extended format, at the option of the implementation, if its declaration is FP-wide.

A method parameter of typedouble is always represented in double format if its dec
laration is FP-strict. A method parameter of typedouble may be represented in double for
mat or in double-extended format, at the option of the implementation, if its declaratio
FP-wide.

Section 8.4.3, Method Modifiers

A MethodModifiermay be eitherwidefp or strictfp. A compile-time error occurs if both
widefp andstrictfp appear as method modifiers in the same method declaration.

Section 8.3.3, Constructor Modifiers

A ConstructorModifiermay not be widefp or strictfp. A compile-time error occurs if
eitherwidefp or strictfp appears as a constructor modifier. This difference betwee
ConstructorModifier and aMethodModifier is intentional.

Section 8.4.6.1, Overriding (By Instance Methods)

The presence or absence ofwidefp andstrictfp modifiers has no effect whatsoever on th
rules for overriding methods and implementing abstract methods.

Section 9.1.2, Interface Modifiers

An InterfaceModifiermay be eitherwidefp or strictfp. A compile-time error occurs if
bothwidefp andstrictfp appear as interface modifiers in the same interface declarati

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 9

-
p-

is
-

-
-
its

ation,

a

ssion.
Section 10.1, Array Types

An array component of typefloat is always represented in float format. An array com
ponent of typedouble is always represented in double format. It is not permitted to re
resent an array component in float-extended format or double-extended format.

Section 14.3, Local Variable Declaration Statements

A local variable of typefloat is always represented in float format if its declaration
FP-strict. A local variable of typefloat may be represented in float format or in float
extended format, at the option of the implementation, if its declaration is FP-wide.

A local variable of typedouble is always represented in double format if its decla
ration is FP-strict. A local variable of typedouble may be represented in double for
mat or in double-extended format, at the option of the implementation, if
declaration is FP-wide.

Section 15.1, Evaluation, Denotation, and Result

Format conversion (section 5.1.8) is applied to the result ofeveryexpression that pro-
duces a value.

Section 15.2, Variables as Values

If an expression denotes a variable, and a value is required for use in further evalu
then the result of applying format conversion to the value of that variable is used.

Section 15.6, Evaluation Order

The rules for evaluation order are not changed.

Section 15.7.1, Literals

The value of a literal of typefloat is always represented in float format. The value of
literal of typedouble is always represented in double format.

Section 15.7.3, Parenthesized Expressions

Parentheses do not affect in any way the choice of format for the value of an expre

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS10

es of

turns
trict
st be

to for-

at or
t and
nver-

, but
Con-
ed

double
Section 15.10, Field Access Expressions

The format conversion rule of section 15.2 applies to field access expressions.

Section 15.11, Method Invocation Expressions

Method invocation conversion (section 5.3) addresses format conversions for the valu
argument expressions.

The fact that format conversion is applied to the result of every expression that re
a value (section 15.1) implies that when an FP-wide method is invoked from FP-s
code, if the value returned by the method is in an extended format, then the value mu
converted to the corresponding non-extended format.

Section 15.12, Array Access Expressions

The format conversion rule of section 15.2 applies to array access expressions.

Sections 15.13.2, 15.13.3, 15.14.1, 15.14.2, Prefix and Postfix Operators

FP-wide prefix and postfix increment and decrement expressions behave with respect
mat decisions exactly as if the expression had been written asx=x+1 or x=x-1 plus a vari-
able access.

Section 15.14.4, Unary Minus Operator-

If, after unary numeric promotion, the operand is represented in float-extended form
double-extended format, then the unary negation operation is carried out in that forma
the result is represented in that format. That result is then subject to further format co
sion, by the general rule of section 15.1.

Section 15.15, Cast Expressions

A cast may convert a value of one numeric type to a similar value of a floating-point type
it needs not have an effect on the choice of format for the result of the cast expression.
sequently, an FP-wide cast to typefloat does not necessarily cause its value to be round
to the nearest representable value in float format, and an FP-wide cast to typedouble does
not necessarily cause its value to be rounded to the nearest representable value in
format.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 11

for-
tion
then

for-
d out
ct to

for-

for-

ed in
that

le of

are to
Section 15.16, Multiplicative Operators

If, after binary numeric promotion, the operands are represented in float-extended
mat or double-extended format, then the multiplication, division, or remainder opera
is carried out in that format and the result is represented in that format. That result is
subject to further format conversion, by the general rule of section 15.1.

Section 15.17.2, Additive Operators (+ and -) for Numeric Types

If, after binary numeric promotion, the operands are represented in float-extended
mat or double-extended format, then the addition or subtraction operation is carrie
in that format and the result is represented in that format. That result is then subje
further format conversion, by the general rule of section 15.1.

Section 15.19, Relational Operators

If, after binary numeric promotion, the operands are represented in float-extended
mat or double-extended format, then the comparison is carried out in that format.

Section 15.20.1, Numerical Equality Operators== and !=

If, after binary numeric promotion, the operands are represented in float-extended
mat or double-extended format, then the equality test is carried out in that format.

Section 15.24, Conditional Operator? :

If, after binary numeric promotion, the second and third operands are represent
float-extended format or double-extended format, then the result is represented in
format. That result is then subject to further format conversion, by the general ru
section 15.1.

Sections 15.25.1, 15.25.2 Simple and Compound Assignment Operators

Assignment conversion (section 5.2) addresses format conversions for values that
be assigned to variables.

Section 15.27, Constant Expression

A compile-time constant expression is always treated as though FP-strict.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS12

float-
stant

float-
stant

ed in
stant

uble-
nstant

ouble-
nstant

ted in
con-
.2.3.
Section 20.9, The Classjava.lang.Float

public static final int WIDEFP_MAX_EXPONENT;

The constant value of this field is the largest exponent that can be represented in
extended format. If the implementation does not use float-extended format, the con
value is +127. Otherwise, the constant value is femax as defined by Section 4.2.3.

public static final int WIDEFP_MIN_EXPONENT;

The constant value of this field is the smallest exponent that can be represented in
extended format. If the implementation does not use float-extended format, the con
value is−126. Otherwise, the constant value is femin as defined by Section 4.2.3.

public static final int WIDEFP_SIGNIFICAND_BITS;

The constant value of this field is the number of bits of significand that can be represent
float-extended format. If the implementation does not use float-extended format, the con
value is 24. Otherwise, the constant value is fp, where fp is defined by Section 4.2.3.

Section 20.10, The Classjava.lang.Double

public static final int WIDEFP_MAX_EXPONENT;

The constant value of this field is the largest exponent that can be represented in do
extended format. If the implementation does not use double-extended format, the co
value is 1023. Otherwise, the constant value is demax as defined by Section 4.2.3.

public static final int WIDEFP_MIN_EXPONENT;

The constant value of this field is the smallest exponent that can be represented in d
extended format. If the implementation does not use double-extended format, the co
value is−1022. Otherwise, the constant value is demin as defined by Section 4.2.3.

public static final int WIDEFP_SIGNIFICAND_BITS;

The constant value of this field is the number of bits of exponent that can be represen
double-extended format. If the implementation does not use float-extended format, the
stant value is 53. Otherwise, the constant value is dp, where dp is defined by Section 4

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 13

o
.2 to

wo
If it
tion

d not
float
mat,

ther

r
n 4.6,

w-
Proposed Changes to the Java Virtual Machine Specification

Chapter 2, Java Concepts

Changes must be made to this chapter tracking the changes to be made inThe Java Lan-
guage Specification,sketched above.

Section 3.2.2, Floating-Point Types and Values

The Java Virtual Machine Specificationrequires that every implementation support tw
floating-point formats, called float and double, which are documented in Section 3.2
be identical to IEEE 754 single and double formats, respectively.

An implementation of the Java virtual machine may, at its option, support t
additional floating-point formats, called float-extended and double-extended.
does, the definition of these additional formats is identical to that given in Sec
4.2.3 of Proposed Changes to the Java Language Specification, above.

Note that float, float-extended, double, and double-extended are “formats” an
Java virtual machine “types”. The float-extended format may be used instead of
format, and the double-extended format may be used instead of double for
according to rules described in Chapters 3 and 6 ofThe Java Virtual Machine Specifi-
cation.

Every Java virtual machine instruction, local variable, or operand stack is ei
explicitly FP-wide, explicitly FP-strict, implicitly FP-wide, or implicitly FP-strict
depending on the settings of theACC_STRICT and ACC_EXPLICIT bits of the
access_flags word of the method_info structure containing the instruction o
defining the method that allocates the local variable or operand stack (see Sectio
Methods).

The encoding of floating-point modes in flag bit settings is as given in the follo
ing table:

Floating-point Mode ACC_STRICT Flag ACC_EXPLICIT Flag

explicitly FP-wide unset set

explicitly FP-strict set set

implicitly FP-wide unset unset

implicitly FP-strict set unset

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS14

ari-
es the

hat

ther

ther

ode
ed in,
ies of

said to

ari-
efined
dou-

more

ntains
rtual

at-
t

Two
Note that this mapping implies that Java virtual machine instructions in, or local v
ables or operand stacks allocated by, code compiled by a Java compiler that predat
proposed changes are implicitly FP-wide.

No means is provided to declare a method implicitly FP-strict in source code. T
floating-point mode can only be produced by a tool such as aclass file postprocessor or a
user-defined class loader.

A Java virtual machine instruction, local variable, or operand stack that is ei
explicitly FP-wide or implicitly FP-wide will be treated as FP-wide.

A Java virtual machine instruction, local variable, or operand stack that is ei
explicitly FP-strict or implicitly FP-strict will be treated as FP-strict.

Less formally but more intuitively, we will refer to classes, methods, or bodies of c
as being treated as FP-wide when all of the Java virtual machine instructions contain
and local variables and operand stacks allocated by, the classes, methods, or bod
code are treated as FP-wide. Similarly, classes, methods, or bodies of code may be
be treated as FP-strict.

Section 3.4, Words

This section will be deleted. The current definitions of the Java virtual machine’s local v
ables and operand stacks are in terms of an abstract word with an implementation-d
size. Such definitions are inconvenient if floating-point values using float-extended or
ble-extended formats may be stored in local variables or on an operand stack.

The proposed new specification defines local variables and operand stacks
abstractly than in the original specification, in terms of values rather than words.

Section 3.6.1, Local Variables

On each method invocation, the Java virtual machine allocates a Java frame which co
an array known as its local variables. A local variable can hold a value of any Java vi
machine data type, including a value of typelong or of typedouble. Values of typefloat
may be stored in a local variable in float format or, if the local variable is FP-wide, flo
extended format. Values of typedouble may be stored in a local variable in double forma
or, if the local variable is FP-wide, double-extended format.

Individual local variables are addressed by indexing into the local variables array.
consecutive local variable indices are reserved for each value of typelong or double.
Such a local variable is only addressed using the lesser index for the value.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 15

-
.

con-
oper-
erand
eceive

data

es of
ble-
nt of

their

ific
words
ough

ngth

hs of

on-
For example, a local variable of typedouble reserves both indicesn and n+1,
although it can only be addressed using indexn. The Java virtual machine specifica
tion does not requiren to be even and does not require alignment of local variables

Section 3.6.2, Operand Stacks

On each method invocation the Java virtual machine allocates a Java frame which
tains an operand stack. Most Java virtual machine instructions take values from the
and stack of the current frame, operate on them, and return results to that same op
stack. The operand stack is also used to pass arguments to methods and to r
method results.

Each entry on the operand stack can hold a value of any Java virtual machine
type, including a value of typelong or of typedouble. Values of typefloat may be
represented in float or, if the operand stack is FP-wide, float-extended format. Valu
typedouble may be represented in double or, if the operand stack is FP-wide, dou
extended format. The Java virtual machine specification does not require alignme
values on the operand stack.

Values from the operand stack must be operated upon in ways appropriate to
types. It is incorrect, for example, to push two values of typeint and then treat them
as a value of typelong, or to push two values of typefloat and then add them with
an iadd instruction. A small number of Java virtual machine instructions (thedup
instructions andswap) operate on runtime data areas without regard to the spec
types of values; these instructions must not be used to break up or rearrange the
of values. These restrictions on operand stack manipulation are enforced thr
class file verification.

Section 4.3.3, Method Descriptors

A method descriptor is valid only if it represents method parameters with a total le
of 255 or less, where that length includes the contribution forthis in the case of
instance method invocations. The total length is calculated by summing the lengt
the individual parameters, and the length ofthis if appropriate, where an item of type
long or double contributes two units to the length and a value of any other type c
tributes one unit.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS16

d

d

int

s
in the
s

e is

nce
t use

ring
Section 4.4.4,CONSTANT_Integer and CONSTANT_Float

Floating-point values stored inCONSTANT_Float_info structures may only be represente
using float format; values may not be represented using float-extended format.

Section 4.4.5,CONSTANT_Long and CONSTANT_Double

Floating-point values stored inCONSTANT_Double_info structures may only be represente
using double format; values may not be represented using double-extended format.

Section 4.6, Methods

Table 4.4, showing theaccess_flags modifiers of themethod_info structure, defines two
additional modifier bits:

Section 4.7.4,Code Attribute

The value of themax_stack item gives the maximum depth of the operand stack at any po
during execution of this method, where a value of typelong or double contributes two units
to the depth and a value of any other type contributes one unit.

The value of themax_locals item gives the number of local variable array indice
reserved for local variables used by this method, including the parameters passed
local variable array to the method on invocation. The index of the first local variable i0.
The greatest local variable index for a value of typelong or double ismax_locals−2; the
greatest local variable index for a value of any other Java virtual machine typ
max_locals−1.

Note that the proposed definition of themax_stack item may not be immediately use-
ful to implementations which do not implement a fixed-width operand stack, for insta
when determining where to push a stack frame. Naive implementations that canno
max_stack directly can choose a conservative maximum stack size based onmax_stack,
or alternatively could calculate a more precise stack size using information derived du
processing such as verification.

Flag Name Value Meaning Used By

ACC_STRICT 0x0800 Floating-point mode is FP-strict
if set, is FP-wide if unset.

Any method

ACC_EXPLICIT 0x1000 Floating-point mode was speci-
fied in the source code.

Any method

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 17

ed-

-

n the
aints
or

ed

pe

be

han

tack
Similarly, the proposed definition of themax_locals item may not be immedi-
ately useful to implementations which do not implement local variables as a fix
width array, for instance when determining the size of a Java frame.

Section 4.7.7,LocalVariableTable Attribute

The sentence “If the local variable atindex is a two-word type (double or long), it
occupies bothindex andindex+1” will be deleted. It is currently found in the descrip
tion of theindex item of an entry in thelocal_variable_table array of theLocal-
VariableTable attribute.

Section 4.8.1, Static Constraints

The four constraints on the index operand of the Java virtual machine local variableload
instructions still stand in the new proposal.

Section 4.8.2, Structural Constraints

The structural constraints on the code array rely on the abstract types of values o
operand stack, not on the format in which those values are literally stored. Constr
on a value of typefloat will hold whether the value is represented in float format
float-extended format. Constraints on a value of typedouble will hold whether the
value is represented in double format or double-extended format.

The following four structural constraints, currently given in Section 4.8.2 ofThe
Java Virtual Machine Specification, are affected by the change to a value-orient
operand stack:

• At no point during execution can the order of the words of a two-word type (long

or double) be reversed or split up. At no point can the words of a two-word ty
be operated on individually.

• No local variable (or local variable pair, in the case of a two-word type) can
accessed before it is assigned a value.

• At no point during execution can the operand stack grow to contain more t
max_stack words.

• At no point during execution can more words be popped from the operand s
than it contains.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS18

stack
e sec-
ype”
able

that

than

ged
n the

oper-
rdless

d
lue

i-

d
es
The first of these constraints can be deleted. The new definition of the operand
only permits values on the operand stack to be loaded and stored in their entirety. Th
ond constraint can have the phrase “or local variable pair, in the case of a two-word t
deleted. The new definition of a local variable does not permit portions of a local vari
to be addressed.

The third constraint can be restated as follows:

• At no point during execution can the operand stack grow to a depth greater than
implied by themax_stack item, where a value of typelong or double contributes two
units to the depth and a value of any other type contributes one unit.

The fourth constraint can be trivially restated:

• At no point during execution can more values be popped from the operand stack
it contains.

Finally, the following constraint on the operand stack can be retained unchan
where the notion of operand stack size is understood to reflect the number of values o
operand stack rather than the number of words:

• Where an instruction can be executed along several different execution paths, the
and stack must have the same size prior to the execution of the instruction, rega
of the path taken

Section 4.9.3, Long Integers and Doubles

Values of typeslong anddouble are treated specially by the verification process.
Whenever a value of typelong or double is moved into a local variable addresse

using indexn, the indexn+1 is specially marked to indicate that all references to the va
of typelong or double must be through the previous indexn.

Whenever a value is moved to a local variablen, the preceding local variablen−1 is
examined to see if it is the index of a value of typelong or double. If so, that preceding
local variable index is changed to indicate that it now contains an unusable value.

Dealing with values of typelong or double on the operand stack is simpler; the ver
fier treats them as single units on the stack. For example, the verification code for thedadd
instruction (add two values of typedouble) checks that the top two values on the operan
stack are both of typedouble. When calculating operand stack length, values of typ
long anddouble each represent a single value.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 19

the
s

ce
repre-

dia-
rams
stack
oper-
s and
nd in
es.
ffer-

5.1.8
ot a
.
on-
er-

t its
on-
tical
Section 4.10, Limitations of the Java Virtual Machine andclass File Format

The greatest index into the local variables array in a method is limited to 65534 by
size of themax_locals item of theClassFile structure. Recall that values of type
long anddouble are considered to reserve two local variable indices.

Section 5.1, The Runtime Constant Pool (in JVMS First Revision only)

Runtime constant values derived fromCONSTANT_Float_info and
CONSTANT_Double_info structures in the binary representation of a class or interfa
are always represented in float and double format, respectively, and cannot be
sented in an extended format.

Chapter 6, Java Virtual Machine Instruction Set

The definition of each Java virtual machine instruction includes one or more “stack
grams” that indicate the effect of the instruction on the operand stack. These diag
are currently written in terms of abstract words, where each value on the operand
consists of one or two words. The change from a word-oriented to a value-oriented
and stack requires that this word orientation be removed from the stack diagram
associated text, including Section 6.4 where stack diagrams are first introduced a
descriptions of some instructions that do not operate on values of floating-point typ

Note that many Java virtual machine instructions are permitted to behave di
ently depending on whether they are treated as FP-wide or FP-strict.

Format Conversion

The format conversions introduced for the Java programming language in section
are reflected in the definition of the Java virtual machine. A format conversion is n
type conversion, but a conversion between representations used for the same type

During the execution of an FP-wide Java virtual machine instruction, format c
version allows an implementation, at its option, to perform any of the following op
ations on a value:

• If the value is represented in float format, then the implementation may, a
option, convert the value from float format to float-extended format. (Note that c
verting from float format to float-extended format does not alter the mathema

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS20

s.)

at its
ec-
men-
e to
erting
for-

tion,
rting
alue

ay, at
ing,
, the
und
arded
k to

that
rand
d for-
t for-
ouble
Such

strict,
when

sen to
stack

sion
ormat

con-
ng, if
cessary
value represented. In particular, NaNs remain NaNs and infinities remain infinitie

• If the value is represented in float-extended format, then the implementation may,
option, convert the value from float-extended format to float format (rounding, if n
essary, to the nearest representable value in float format). Alternatively, the imple
tation may, at its option, keep the value in float-extended format but round the valu
the nearest representable value in float format (this may also be regarded as conv
the value to float format with rounding and then converting back to float-extended
mat).

• If the value is represented in double format, then the implementation may, at its op
convert the value from double format to double-extended format. (Note that conve
from double format to double-extended format does not alter the mathematical v
represented. In particular, NaNs remain NaNs and infinities remain infinities.)

• If the value is represented in double-extended format, then the implementation m
its option, convert the value from double-extended format to double format (round
if necessary, to the nearest representable value in double format). Alternatively
implementation may, at its option, keep the value in double-extended format but ro
the value to the nearest representable value in double format (this may also be reg
as converting the value to double format with rounding and then converting bac
double-extended format).

In addition, upon the execution of an FP-wide Java virtual machine instruction
implements a store into an FP-strict local variable or a push onto an FP-strict ope
stack, format conversion always converts a value that is represented in float-extende
mat to float format (rounding, if necessary, to the nearest representable value in floa
mat) and always converts a value that is represented in double-extended format to d
format (rounding, if necessary, to the nearest representable value in double format).
conversion is necessary only when the value is stored to a local variable that is FP-
and the implementation has chosen to represent the value in an extended format; or
an FP-strict method has invoked an FP-wide method and the implementation has cho
represent the result of the method invocation, to be pushed onto the FP-strict operand
of the invoker, in an extended format.

Upon the execution of an FP-strict Java virtual machine instruction, format conver
always converts an operand value that is represented in float-extended format to float f
(rounding, if necessary, to the nearest representable value in float format) and always
verts a value that is represented in double-extended format to double format (roundi
necessary, to the nearest representable value in double format). Such conversion is ne

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 21

d the

nti-
ition

lan-
g the

ype
er-
s are

tant
on

a

per-
s
cted

era-

etic

con-
per-

ected

one
the
only when the value of a local variable is accessed, the local variable is FP-wide, an
implementation has chosen to represent the local variable in an extended format.

Note that the Java virtual machine’s definition of format conversion is not ide
cal to that for the Java programming language: the Java virtual machine’s defin
does not provide a catchall case for types other thanfloat anddouble. While the
catchall case is a useful convenience when describing the Java programming
guage, it would obscure the presentation of the Java virtual machine by increasin
number of Java virtual machine instructions subject to format conversion.

Load and Store Instructions

Execution of a Java virtual machine instruction implementing a load of a value of t
float or double from a local variable onto the operand stack performs format conv
sion on the operand value before the value is loaded. The affected instruction
fload, fload_<n>, dload, anddload_<n>.

Execution of a Java virtual machine instruction implementing a load of a cons
value of typefloat or double onto the operand stack performs format conversion
the constant value before the value is loaded. The affected instructions arefconst_<f>,
dconst_<d>, and anyldc, ldc_w, or ldc2_w instruction with an operand representing
float or double constant.

Execution of a Java virtual machine instruction implementing a store of an o
and of typefloat or double from the operand stack into a local variable perform
format conversion on the operand value before the value is stored. The affe
instructions arefstore, fstore_<n>, dstore anddstore_<n>.

Arithmetic Instructions

Execution of a Java virtual machine instruction implementing a unary arithmetic op
tion on an operand of typefloat or double first performs format conversion on its
operand value. The affected instructions arefneg anddneg.

Execution of a Java virtual machine instruction implementing a binary arithm
operation on two values of typefloat or on two values of typedouble first performs
format conversion separately on its operand values, but subject to the additional
straint that the implementation must make its choices in such a way that the two o
ands, after format conversion, are represented in the same format. The aff
instructions arefadd, fsub, fmul, fdiv, frem, dadd, dsub, dmul, ddiv, anddrem.

Execution of a Java virtual machine instruction implementing an operation on
or more values of a floating-point type, having performed format conversion on

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS22

ctly as
st be
round

hich
o

erand
m-

of a
tted
ed by

esult
to

ype

. The

d of
value

d of
rand
operand as permitted by the above rules, operates on the operand or operands exa
specified by IEEE 754 for that operation and operand format. That is, the result mu
computed exactly and then rounded to the nearest value of the operand format using
to even.

Execution of an Java virtual machine arithmetic instruction that produces a result w
is a value of typefloat or double performs format conversion on its result value prior t
pushing it onto the operand stack. The affected instructions arefneg, fadd, fsub, fmul, fdiv,
frem, dneg, dadd, dsub, dmul, ddiv, anddrem.

Type Conversion Instructions

Execution of a Java virtual machine type conversion instruction that operates on an op
of typefloat or double performs format conversion on the operand value prior to perfor
ing the type conversion. The affected instructions aref2i, f2l, f2d, d2i, d2l, andd2f.

Execution of a Java virtual machine type conversion instruction taking an operand
floating-point type or producing a result of a floating-point type must, after any permi
format conversion on the operand value, convert between types exactly as specifi
IEEE 754 for that conversion and operand format.

Execution of a Java virtual machine type conversion instruction that produces a r
value of typefloat or double performs format conversion on the result value prior
pushing it onto the operand stack. The affected instructions arei2f, l2f, d2f, i2d, l2d, and
f2d.

Object and Array Manipulation Instructions

Execution of a Java virtual machine instruction implementing a load of a value of t
float or double from an array component, instance variable, or class (static) variable
onto the operand stack performs format conversion on the value before it is loaded
affected instructions arefaload, daload, and getfield and getstatic where the referenced
field is of typefloat or double.

Execution of a Java virtual machine instruction implementing a store of an operan
typefloat that is represented in float-extended format always converts the operand
to float format before it is stored.

Execution of a Java virtual machine instruction implementing a store of an operan
type double that is represented in double-extended format always converts the ope
value to double format before it is stored.

The affected instructions arefaload, daload, andputfield andputstatic where the refer-
enced field is of typefloat or double.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 23

tion

t that
after
s are

tion,
d

argu-
riptor

e

value
rst
cal

ment

meter
Comparison Instructions

Execution of a Java virtual machine instruction implementing a comparison opera
on two values of typefloat or on two values of typedouble first performs format con-
version separately on its operand values, but subject to the additional constrain
the implementation must make its choices in such a way that the two operands,
format conversion, are represented in the same format. The affected instruction
fcmpl, fcmpg, dcmpl, anddcmpg.

Method Invocation Instructions

On every FP-wide execution of a Java virtual machine method invocation instruc
the operand stack must containnargs values which are to be passed to the invoke
method as local variables in the stack frame of the invoked method. The number of
ment values and the type and order of the values must be consistent with the desc
of the resolved method.

Each invocation of a non-native method creates a new stack frame for th
method being invoked. Two cases must be considered:

• If this is a class (static) method invocation, thenargs argument values are popped
from the operand stack. Format conversion is performed on each argument
of typefloat or typedouble, then the argument values are stored into the fi
nargs local variables of the new stack frame, with the first argument value in lo
variable 0, the second argument value in local variable 1, and so on.

• If this is not a class method invocation, thenargs argument values andobjectref are
popped from the operand stack. Format conversion is performed on each argu
value of typefloat or typedouble, then theobjectref and argument values are
stored into the firstnargs+1 local variables of the new stack frame, withobjectref
in local variable 0, the first argument value in local variable 1, and so on.

The invokeinterface instruction has annargs operand (calledcount in the first
revision ofThe Java Virtual Machine Specification) which is currently used to specify
the number of words of arguments to be found on the operand stack. Thecount oper-
and and its interpretation are retained for compatibility. Thecount operand is an
unsigned byte which must not be zero. Thecount value must be consistent with the
descriptor of the resolved interface method, where each method descriptor para
of type long or double contributes two units to thecount value, and each method
descriptor parameter of any other type contributes one unit.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS24

diffi-
face
ptor.

turn
e

(e.g.
ns
n, but
y be in
their
in the

for-
rmats

ort,
Note that implementations that use extended floating-point formats may have
culty usingcount to derive the number of argument values to be pushed for the inter
method invocation. This information may be derived from the interface method descri

The Java virtual machine method invocation instructions areinvokeinterface, invokespe-
cial, invokestatic, andinvokevirtual.

Return Instructions

Execution of a Java virtual machine instruction implementing a return operation on a re
value of typefloat or double first performs format conversion on the return value. Th
affected instructions arefreturn anddreturn.

Operand Stack Management Instructions

Java virtual machine instructions that manipulate untyped data on the operand stack
dup, pop2, swap) will be defined in terms of values rather than words. These instructio
will be interpreted depending on the format used to represent the value they operate o
not the type of those values. Some of these instructions can operate on values that ma
any one of several forms, and will behave in different ways depending on the forms of
operands. Each alternative behavior will be represented by a separate stack diagram
instruction definition. For instance thepop2 instruction will have two stack diagrams; the
dup2_x2 instruction will have four stack diagrams.

For the purposes of defining this class of instructions we will separate the possible
mats of operands into two classes. Values represented using the floating-point fo
float-extended, double, double-extended, as well as values of the integral typelong, will
be called “format class 2". Values of other types (boolean, byte, char, short, int, and
float values represented using float format), which will be called “format class 1".

The instructions to be defined in this way, and the stack diagrams they will supp
include:

dup2
Stack ...,value2, value1 ⇒

..., value2, value1, value2, value1

wherevalue1 andvalue2 are of format class 1
OR

Stack ...,value ⇒
..., value, value

wherevalue is of format class 2

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 25
dup2_x1
Stack ...,value3, value2, value1 ⇒

..., value2, value1, value3, value2, value1

where value1, value2, and value3 are of format class 1
OR

Stack ...,value2, value1 ⇒
..., value1, value2, value1

wherevalue1 is of format class 2 andvalue2 is of format class 1

dup2_x2
Stack ...,value4, value3, value2, value1 ⇒

..., value2, value1, value4, value3, value2, value1

wherevalue1, value2, value3, andvalue4 are of format class 1
OR

Stack ...,value3, value2, value1 ⇒
..., value1, value3, value2, value1

wherevalue1 is of format class 2 andvalue2 andvalue3 are of
format class 1

OR
Stack ...,value3, value2, value1 ⇒

..., value2, value1, value3, value2, value1

wherevalue3 is of format class 2 andvalue1 andvalue2 are of
format class 1

OR
Stack ...,value2, value1 ⇒

..., value1, value2, value1

wherevalue1 andvalue2 are of format class 2

dup_x2
Stack ...,value3, value2, value1 ⇒

..., value1, value3, value2, value1

wherevalue1, value2, andvalue3 are of format class 1
OR

Stack ...,value2, value1 ⇒
..., value1, value2, value1

wherevalue2 is of format class 2 andvalue1 is of format class 1

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS26

rms
alue

n pp.
pop2
Stack ...,value2, value1 ⇒

...

wherevalue2 andvalue2 are of format class 1
OR

Stack ...,value ⇒
...

wherevalue2 is of format class 2

The following operand stack manipulation instructions are currently defined in te
of one word on the operand and need to be trivially modified to operate on one v
instead. Each will have a single stack diagram:

dup
Stack ...,value ⇒

..., value, value

wherevalue is of format class 1

dup_x1
Stack ...,value2, value1 ⇒

..., value1, value2, value1

wherevalue1 andvalue2 are of format class 1

pop
Stack ...,value ⇒

...

wherevalue is of format class 1

swap
Stack ...,value2, value1 ⇒

..., value1, value2

wherevalue1 and value2 are of format class 1

Chapter 7, Compiling for the Java Virtual Machine

This chapter requires minor changes to correct operand stack word orientation, e.g. o
343-344 of the first printing.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 27

led in

to be

he
ode
of the

t has
r the
thod.

int

in
the

n or

lass
uc-

selves
le use
s not
s.
on-
aints
ct.
Chapter 9, An Optimization

The definitions of the implementation-specific_quick instructions will be modified to be
consistent with the Java virtual machine instruction set. The changes are not detai
this proposal.

Implications for Compilers and Tools

Although the Java programming language permits classes as well as methods
declared using thewidefp or strictfp modifiers, theclass file format only provides
facilities to specify the floating-point mode of individual methods. Compilers for t
Java programming language must propagate an explicitly specified floating-point m
from a class declaration to each method defined in that class unless the declaration
method itself explicitly specifies a floating-point mode.

Compilers for the Java programming language must flag each method tha
been declared to be FP-wide or FP-strict, whether the declaration was made fo
specific method or for the class containing the method and propagated to the me
They do this by setting theACC_EXPLICIT bit of the access_flags item of the
method_info structure for each method with an explicitly declared floating-po
mode, and leaving it cleared otherwise.

If a method is explicitly declared to be FP-wide, whether in its declaration or
the declaration of its class, or if no floating-point mode is explicitly declared for
method or its class, then a compiler must clear theACC_STRICT bit and set the
ACC_EXPLICIT bit of the access_flags item of themethod_info structure of that
method. If a method is explicitly declared to be FP-strict, whether in its declaratio
in the declaration of its class, then a compiler must set theACC_STRICT bit and the
ACC_EXPLICIT of the access_flags item of the method_info structure of that
method.

The floating-point mode of a class is used as the floating-point mode of its c
initialization and instance initialization methods. The floating-point mode of constr
tors, static initializers, and instance initializers may not be set individually.

Constant expressions should always be treated as FP-strict. Compilers them
implemented in the Java programming language must take care that the possib
of extended precision by the host Java platform on which the compiler is run doe
cause compile-time constant expressions to be evaluated using extended format

Compilers and static optimizers must not inline if doing so would reduce the c
straints on rounding mandated by the virtual machine specification. The constr
that apply to a given situation will vary depending on the floating-point mode in effe

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS28

d

ing to
rm-

tro-

ay be
FP-
sses
rna-
etect

may

ation
FP-

ations
ple-
ifica-
osed
ntage

cifi-
754
nded
For example, a method declared using thewidefp modifier such as

widefp private double add(double a, double b) { return a + b; }

could normally be inlined using a singlefadd instruction. However, a variant of that metho
declared using thestrictfp modifier cannot be trivially inlined:

strictfp private double add(double a, double b) { return a + b; }

Because the specification requires rounding of the method arguments, a compiler wish
inline this method may have to insert additional instructions to make the inlining confo
ant.

Other compiler optimizations such as forward substitution may require similar in
duction of additional instructions to make the optimization conformant.

Tools such as class-to-class transformers and user-defined class loaders m
defined to change the effective floating-point mode of implicitly FP-strict classes to
wide or implicitly FP-wide classes to FP-strict. Such tools may be useful for legacy cla
where source is not available and you find different results on different platforms. Alte
tively, you may wish to use such tools to convert classes to be FP-wide in order to d
numerically unstable algorithms.

Such tools should only modify theACC_STRICT flag value of methods whose
ACC_EXPLICIT bit is not set. Methods whoseACC_EXPLICIT bit is set should not be mod-
ified by such tools; these methods have declared a specific floating-point mode and
not operate properly if that declaration is not respected.

Neither the Java language specification nor the Java virtual machine specific
mandates a tool or procedure to change the effective floating-point mode of implicitly
wide or implicitly FP-strict classes.

Alternatives for Java Virtual Machine Implementors

The proposed changes to the Java programming language and virtual machine specific
do not invalidate a currently conforming Java virtual machine implementation; any im
mentation conforming to the existing specification conforms to the proposed new spec
tion. However, implementors targeting processors that can benefit by the prop
extensions may wish to modify their Java virtual machine implementations to take adva
of those extensions to provide better performance or increased precision.

A given implementation is free to offer alternatives, within the confines of the spe
cations. On platforms that naturally support floating-point calculations using IEEE
extended formats, the most likely implementation choices will be between using exte

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 29

ts of
first
nd
uture

for-
y let
both.
ts to

hav-
mple-

par-
ming
ing-
rify
rmit-
-wide
oses

P-
-
those
cur-

pro-
not

tive
ail-
sible
out-
formats in the permitted contexts and exclusively using the more restrictive forma
earlier Java programming language and virtual machine specifications. The
choice is likely to yield improved speed for floating-point calculations. The seco
should guarantee identical results across a wider range of contemporary and f
implementations and backwards compatibility with older implementations.

An implementation that supports floating-point calculations using extended
mats may provide variants of that support. For instance, an implementation ma
the user select whether to use float-extended format, double-extended format, or
An implementation may also let the user select details about the extended forma
use, within the ranges permitted by IEEE 754.

Where an implementation provides a choice between alternative permitted be
iors, those behaviors must be chosen on Java virtual machine startup using an i
mentation-specific mechanism such as a command line flag.

Implications for Testing

The proposed changes have implications on Java platform compatibility testing. In
ticular, some small number of current tests that test for the original Java program
language floating-point behavior may be invalidated. A new suite of tests for float
point conformance will be written. These tests will be written in such a way as to ve
conformance of implementations that produce results within the range of values pe
ted by the extended Java programming language specification when running FP
code. Such tests would of course verify conformance of an implementation that cho
to treat FP-wide code as FP-strict.

In addition, tests verifying conformance of implementations when running F
strict code will be written, and will require bit-for-bit compatibility for all implemen
tations for such code. Note that such tests are likely to be more stringent than
performed in current compatibility testing; hence, an implementation that passes
rent floating-point compatibility tests, but does not exactly implement the Java
gramming language and virtual machine specifications for floating-point, may
pass the improved test suites.

A given implementation that may be run in several modes offering alterna
floating-point semantics will be required to conform to the specification in all av
able floating-point modes. The proposed extended specification limits permis
floating-point behaviors. Implementations or modes of implementations that fall
side of the proposed new specification will not pass conformance testing.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS30

t val-
r

Java
nor-

roper-

ming
y be

on
has

to the
Notes for Implementors

The existing Java programming language and virtual machine specifications specify tha
ues of typefloat and operators on values of typefloat behave exactly as specified fo
IEEE 754 single format values. Values of typedouble and operators on values of typedou-
ble behave exactly as specified for IEEE 754 double format values. In particular, the
programming language and virtual machine currently require support of IEEE 754 de
malized floating-point numbers and gradual underflow. In the present proposal, these p
ties continue to apply to FP-strict code but not to FP-wide code.

Some CPU architectures may need to take special care to implement fully confor
FP-strict operations. For instance, CPUs with fused multiply and add instructions ma
unable to use those instructions when implementing FP-strict operations.

In order to implement conforming FP-strict operations on floating-point values
Intel Architecture CPUs (e.g. 486 or Pentium), a Java virtual machine implementation
to implement an operation such as multiplication using a code sequence equivalent
following:

fld qword ptr [dx]

fclex

fmul qword ptr [dy] // 53-bits of sign., 15-bits of exp.

fstsw word ptr [sw] // rounded-up in C1 and sticky

// in Precision(Inexact)

fst qword ptr [dtmp] // 53-bits of significand,

fstsw ax // and 11-bits of exponent

and ax,0x30 // Precision/Inexact AND Underflow

xor ax,0x30 // set after fmul and store

jne skip // if not then okay, continue

// subroutine call to fix-up:

// fix-up will use [sw] and top of x87 to round and clamp as

// required by strict Java floating-point

skip: fstp qword ptr [dz]

Note that the following code sequence:

fld qword ptr [dx]

fmul qword ptr [dy]

fstp qword ptr [dz]

is not sufficient and will not satisfy future conformance testing.

	Proposal for Extension of JavaTM Floating Point Semantics, Revision 1, May 1998
	Introduction and Scope
	Summary of Changes in Revision 1 of Proposal
	IEEE 754 Floating-point Formats
	Proposed Changes to the Java Language Specification
	Section 3.9, Keywords
	Section 4.2.3, Floating-Point Types and Values
	Section 5.1.8, Format Conversion
	• If the value is represented in float format, then the implementation may, at its option, conver...
	• If the value is represented in double format, then the implementation may, at its option, conve...
	Section 5.2, Assignment Conversion
	Section 5.3, Method Invocation Conversion
	Section 5.6.1, Unary Numeric Promotion
	Section 5.6.2, Binary Numeric Promotion
	Section 8.1.2, Class Modifiers
	Section 8.3, Field Declarations
	Section 8.4.1, Formal Parameters
	Section 8.4.3, Method Modifiers
	Section 8.3.3, Constructor Modifiers
	Section 8.4.6.1, Overriding (By Instance Methods)
	Section 9.1.2, Interface Modifiers
	Section 10.1, Array Types
	Section 14.3, Local Variable Declaration Statements
	Section 15.1, Evaluation, Denotation, and Result
	Section 15.2, Variables as Values
	Section 15.6, Evaluation Order
	Section 15.7.1, Literals
	Section 15.7.3, Parenthesized Expressions
	Section 15.10, Field Access Expressions
	Section 15.11, Method Invocation Expressions
	Section 15.12, Array Access Expressions
	Sections 15.13.2, 15.13.3, 15.14.1, 15.14.2, Prefix and Postfix Operators
	Section 15.14.4, Unary Minus Operator -
	Section 15.15, Cast Expressions
	Section 15.16, Multiplicative Operators
	Section 15.17.2, Additive Operators (+ and -) for Numeric Types
	Section 15.19, Relational Operators
	Section 15.20.1, Numerical Equality Operators == and !=
	Section 15.24, Conditional Operator ? :
	Sections 15.25.1, 15.25.2 Simple and Compound Assignment Operators
	Section 15.27, Constant Expression
	Section 20.9, The Class java.lang.Float
	Section 20.10, The Class java.lang.Double

	Proposed Changes to the Java Virtual Machine Specification
	Chapter 2, Java Concepts
	Section 3.2.2, Floating-Point Types and Values
	Section 3.4, Words
	Section 3.6.1, Local Variables
	Section 3.6.2, Operand Stacks
	Section 4.3.3, Method Descriptors
	Section 4.4.4, CONSTANT_Integer and CONSTANT_Float
	Section 4.4.5, CONSTANT_Long and CONSTANT_Double
	Section 4.6, Methods
	Section 4.7.4, Code Attribute
	Section 4.7.7, LocalVariableTable Attribute
	Section 4.8.1, Static Constraints
	Section 4.8.2, Structural Constraints
	• At no point during execution can the order of the words of a two-word type (long or double) be ...
	• At no point during execution can the operand stack grow to a depth greater than that implied by...
	• At no point during execution can more values be popped from the operand stack than it contains.
	• Where an instruction can be executed along several different execution paths, the operand stack...
	Section 4.9.3, Long Integers and Doubles
	Section 4.10, Limitations of the Java Virtual Machine and class File Format
	Section 5.1, The Runtime Constant Pool (in JVMS First Revision only)
	Chapter 6, Java Virtual Machine Instruction Set
	Format Conversion

	• If the value is represented in float format, then the implementation may, at its option, conver...
	• If the value is represented in double format, then the implementation may, at its option, conve...
	Load and Store Instructions
	Arithmetic Instructions
	Type Conversion Instructions
	Object and Array Manipulation Instructions
	Comparison Instructions
	Method Invocation Instructions

	• If this is a class (static) method invocation, the nargs argument values are popped from the op...
	Return Instructions
	Operand Stack Management Instructions
	Chapter 7, Compiling for the Java Virtual Machine
	Chapter 9, An Optimization

	Implications for Compilers and Tools
	widefp private double add(double a, double b) { return a + b; }
	strictfp private double add(double a, double b) { return a + b; }

	Alternatives for Java Virtual Machine Implementors
	Implications for Testing
	Notes for Implementors
	fld qword ptr [dx]
	fclex
	fmul qword ptr [dy] // 53-bits of sign., 15-bits of exp.
	fstsw word ptr [sw] // rounded-up in C1 and sticky
	// in Precision(Inexact)
	fst qword ptr [dtmp] // 53-bits of significand,
	fstsw ax // and 11-bits of exponent
	and ax,0x30 // Precision/Inexact AND Underflow
	xor ax,0x30 // set after fmul and store
	jne skip // if not then okay, continue
	// subroutine call to fix-up:
	// fix-up will use [sw] and top of x87 to round and clamp as
	// required by strict Java floating-point
	skip: fstp qword ptr [dz]
	fld qword ptr [dx]
	fmul qword ptr [dy]
	fstp qword ptr [dz]

