Evolving Java’s Floating Point Support:

The Good.,
the Bad, and
the Ugly

Joseph D. Darcy

formerly of the University of California, Berkeley
now at Sun Microsystems

The Value of Diversity

Panic! UNIX System Crash Dump Analysis
by Chris Drake and Kimberly Brown

“For complete technical information about the

| Floating-point Status Register| and the contents
of some of its fields, refer to both the SPARC

Version 8 Specification and the ANSI/IEEE
Standard 754-1985,

preferably on nights when you can’t sleep.”

Outline

Background on IEEE 754

Programming Languages and Floating Point
* Base conversion

* Supporting different floating point systems (IEEE 754,
VAX, Cray, etc.)

e Implementation shortcomings
Languages and Extensions

* Borneo

* Sun’s PEJFPS

o Java Grande Numerics
e JVM 1.2

Background: Basic IEEE 754

An IEEE 754 format 1s specified by two numbers, K and V.
e K+1 exponent bits, N significand bits

* Together K and N determine the size of the format

Finite values representable in a format are given by allowing

two parameters k and » to range over a set of values in the formula

finite value = 2¥ 1=V

e exponent: 128 <k <2k
o significand: -2V<n <2V

« subnormals in IEEE 754 allow gradual underflow
(no break in range of # around zero)

» also IEEE 754 special values

« NaN (Not a Number)
 Finfinity

More IEEE 754 teatures

The standard defines a number of formats of different sizes

Total bits, bits for N bits forK+1. E,ox Eoin
N +H(K+1)
single 32 24 8 127 -126
double 64 53 11 1023 -1022
double extended 279 > 64 =15 > 16383 >-16382

Defined operations, +, -, *, /, V, conversions, comparison

Result computed as if an infinitely precise intermediate result is
calculated, then rounded to the destination format according to the
current dynamic rounding mode

 default mode is round to nearest even (no statistical bias, prevents
numerical drift in certain loops)

 round to +oo and round to - (used for finding error bounds, e.g.
interval arithmetic)

 round to 0 (convert floating point to integer, error analysis)

Rounding mode usually stored in FPU control register .

IEEE 754 Exceptional Conditions

Default exception handling policy can be overridden by the
programmer

Two mechanisms to deal with exceptional conditions

» Default mode (required), set corresponding sticky flag and continue with (possibly)
special value (used by Java without the flags)

» Trapping mode (optional), execute a user-defined subroutine, trap handlers can be
set independently for all five conditions (maps to language exceptions in Borneo)

Sticky flags in FPU status register, trapping status in FPU
control register

Five exceptional conditions and default responses
e Invalid (V-10, o — 0, 0*(.0, 0.0/0.0, co/oo, etc.): continue with a NaN.
Invalid is also signaled when some comparison operators have a NaN operand
* Overflow: continue with +oo or 2MAX VALUE (depending on rounding mode)
* Divide by Zero: continue with £
e Underflow: continue with a subnormal or 0.0

* Inexact (due to rounding, usually ignored): ordinary value

The Good: Base Conversion in Java

* Base conversion 1s usually omitted from language specs;
Java requires correctly rounded decimal to binary and binary
to decimal conversion (actually available in both directions

since JDK 1.1)
 1ncorrect binary < decimal conversion creates inconsistencies

 runtime vs. compile time differences (documented in IBM
FORTRAN II)

 hard to trust delivered answers, obscures correctness

 despite multiple publications in widely-read conferences [1990
PLDI], problem persists
« Microsoft math: Windows 3.1 calculator 2.01-2.00=0.00"!)

« bug in a MS C library function, not attributable to hardware
roundoff

The Good: IEEE 754 required 1n Java

Java mandates IEEE 754 £1oat and
double formats

* Jettisons limitations from legacy of
compatibility with Cray, VAX, and IBM
3770 arithmetic (c.f. C9X)

» Simplified library development
* Disciplined exact reproducibility feasible
 QGreatly enhances predictability

The Bad: Theory and Practice

» Expression evaluation rules
« K&R C vs. ANSI C, Java chose ANSI C

« widest available policy protects against unrecognized
numerical instabilities

* Exactly reproducible floating point often not needed

« Java vendors, including Sun, release non-conforming
environments

* faulty decimal to binary conversion in JDK 1.0.2
 exponent limit complications on the x86

* transcendental function library

The Bad: Subsetting IEEE 754

Must use IEEE 754 formats but required features are disallowed

 Directed rounding modes and floating point exceptions are explicitly
forbidden (JLS §4.2.4)

« Sticky flags are omitted
* Floating point types

* Only float and double are supported

« Java lacks a name for the beneficial double extended format
(some C compilers map 1ong double to double extended)

« (Can’t use simpler, faster, more understandable and maintainable
robust algorithms, e.g.
“Faster Numerical Algorithms via Exception Handling,” Demmel

and L1, IEEE Transactions on Computers, vol. 43, no. 8, August
1994, pp. 983-992

e Denies features helpful to ordinary programmers

10

Detecting Numerical Sensitivities

Two formulae to calculate the area of a triangle, one unstable (but
commonly found), one stable (less widely known)

Rounding Heron’s Formula Heron’s Formula
Mode s=((a+b)+c)/2 J(a+(b+0))-(c=(a-b))-(c+(a-b))-(a+(b-c)
4 . .
\./ s-(s—a)- (s.— b)-(s—c) 5 (stable with a2 52.) (stable if float datg eyaluated indouble
(unstable if evaluated in £1oat precision) precision)

a=12345679, b=12345678, c=1.01233995>a—b

to nearest 0.00 972730.06 972730.06

to +o0 17459428.00 972730.25 972730.06

to -co 0.00 972729.88 972730.00

to 0 -0.00 972729.88 972730.00
a=12345679, b=12345679, c=1.01233995>a—-b

to nearest 12345680.00 6249012.00 6249012.00

to 400 12345680.00 6249013.00 6249012.50

to -00 0.00 6249011.00 6249012.00

to 0 0.00 6249011.00 6249012.00

* can be used by non-expert programmers to find who to blame

» doesn’t require the source code

« anomalies very “spiky,” perturbing data can hide the problem

* (technique supported indirectly in Borneo via extra-lingual
method call and code generation requirements)

11

The Better: Borneo 1.0.27

Includes all required and recommended IEEE 754 features
Design constraint: upwards compatible with Java 1.0

Given a Java class P compiled to bytecode, another Java class cannot
determine whether P was compiled under Borneo or Java semantics

"Formerly known as Teak. In the future will be known as Kalimantan. ,,

Borneo Features

Carryover from Java

correctly rounded base conversion and requiring IEEE 754

Add

IEEE 754 semantics, sticky flags are an observable side affect
libraries using flexible operator overloading (interval, etc.)

primitive floating point type indigenous to access the
double extended floating point format where available

language declarations

« anonymous FloatingPointType to specify “Old C”
expression evaluation

 control IEEE 754 features
« sticky flags, control flow and method interface

 rounding modes
13

Language Control of IEEE 754: Rounding Modes

compiler handles messy details, better programmer interface

+ allows specialized compiler optimizations and improves compiler and
programmer ability to reason about the code

 lexically scoped, callee does not inherit from caller (less global state)
e default rounding mode round to nearest

* (language backdoor to support fully dynamic rounding)

// Syntactically // Logically // Correct Implementation
// 1in Borneo { // in Java
{ int saved rm = getRound(); {
rounding new rm; setRound (new rm) ; int saved rm = getRound();
Some computation... Some computation... try

}

setRound (saved rm); {
} setRound (new rm) ;
Some computation...

}
finally

{

setRound (saved rm) ;

}

14

Java and the x86: What 1s the 1ssue?

* The x86 most naturally operates on 80-bit double
extended register values

« What about just setting the rounding precision?

 the x86 can be made to round to double precision or
float precision but

« only the significand i1s restricted, not the exponent
« to restrict the exponent, a store to memory 1s required
« the store to memory doesn’t change the value in the register

* to continue the computation, the rounded value has to be
reloaded from memory

 excess memory traffic degrades performance
« works correctly for f1oat, but not for double

15

Pure double on the x86

double rounding of double subnormals can lead to (literally) a
very small difference from pure double, =10-3%4

future subnormal answer is rounding once (to full precision)
when first computed, rounded again (to reduced precision) when
stored to memory

two-step rounding of full precision value to a subnormal can
differ from direct rounding to a subnormal

eliminating the double rounding on underflow discrepancy can
be very expensive

« 10X slowdown reported using previously known methods
« anew technique gives a factor of 2X to 3X slowdown

(comparable to current practice that doesn’t quite conform to
Java semantics)

16

The Ugly: PEJFPS

Proposal for Extension of Java™ Floating
Point Semantics, Revision I, May 1995

formerly found at
http://java.sun.com/feedback/fp.html

17

Summary of PEJFPS

 QGoals:

- allowed some access to extended precision where it 1s supported
by hardware

- ameliorated Java’s floating point performance implications on
the x86

« Some float and double values could be stored as and operated
on as extended format floating point values.

e Method qualifiers widefp and strictfp controlled contexts
where extended formats could and could not be used.

 The virtual machine decided when and whether to use extended
formats.

« Existing Java source code and class files were subject to the
revised semantics

18

A change in philosophy

Java allows application developers to write a program
once and then be able to run it everywhere on the Internet.

Except for timing dependencies or other non-determinisms
and given sufficient time and sufficient memory space, a
Java program should compute the same result on all
machines and in all implementations.

—Preface to The Java™ Language Specification

* For both intrinsic and practical reasons, Java code does not live up to it
“write once, run anywhere” slogan

« But, Java is much more predictable than other contemporary
languages. The sizes of the types are given, expression evaluation
order is specified, etc.

« PEJFPS would have removed Java’s predictability for floating point
19

Compiler Latitude

Under PEJFPS, the compiler decided to use or not use extended
precision at its discretion. From PEJFPS,

Section 5.1.8, Format Conversion
Within an FP-wide expression, format conversion allows an implementation,
at its option, to perform any of the following operations on a value:

 float — float extended and float extended — float
 double - double extended and double extended — double

Conclusion:

» extended formats could be used inconsistently at the compiler’s
whim

20

Do cry over spilt registers

Will breaking an expression into pieces change the value
computed?

// widefp context
double a, tl, t2;

a:

BigExpression, * BigExpression,;

// will common subexpression elimination happen?

tl =
t2 =
if (a

BigExpressiony;
BigExpression,;
== tl * t2)

Faster to register spill 64 bit double values instead of 80 bit

double extended values (lower latency instruction and less
memory traffic)

For no good reason breaks referential transparency present in Java 1.0

21

Everything old 1s new again

 Sun III compilers used extended Those who cannot remember the past
are condemned to repeat it.

precision for anonymous values but _ George Santayana
had no language type corresponding The Life of Reason, vol. 1,
to double extended Reason in Common Sense

* Lack of a language type caused problems since the register’s
doubled extended value of an expression assigned to a
double variable could be used in place of the rounded double

value stored in the variable

e Analogous problems exists on some FORTRAN and C
compilers for the x86, recently discussed in the
comp.compllers newsgroup

22

The Better: Java Grande

 What is Java Grande? (see http://www.javagrande.orq)

 Industrial, academic, and research community effort to advise on how to
evolve Java to be a suitable environment for “grande” computation

« Numerics and Concurrency working groups
* “Improving Java for Numerical Computation”
« Serves the interests of non-exert programmers better than Java
« Describes reasonable and desirable floating point semantics
e strictfp (Java 1.0)
« default, allow some extended exponent range on the x86

 associativefp, allow the compiler to rewrite floating point code as
if the floating point operations were associative (used to generate fast
platform-specific matrix multiply routine)

« Identifies 1ssues related to “lightweight classes” and operator overloading
« Provides detailed examples of code generation on the x86

23

Faster pure double on the x86

A refinement of existing store-reload technique from Roger Golliver of
Intel

store-reload works for addition and subtraction

for multiplication

» scale down one of the operands by
Y (Epqay double extended - Ky, double)

» perform the operation
» rescale product up to proper range
« perform a store-reload to enforce proper overflow threshold

analogous 1diom for division

exact emulation marginally more expensive than plain store-reload
slowdown factor of 2 to 4 instead of 10 (includes exception optimization)
No special testing is needed to handle 0.0, infinities, and NaN

IEEE sticky flags are set properly and the technique works under dynamic

rounding modes
24

The Good: Borneo + Java Grande

* Borneo covers adding IEEE 754 support as
well as operator overloading and
lightweight classes

 Java Grande describes practical code
generation techniques for the x86 and
outlines different floating point semantics

* Together, Borneo and Java Grande provide
a greatly enriched numerical programming
environment

25

The not too bad: JVM 1.2

* The floating point aspects of the JVM
specification are being updated

 methods in class files can use “strict” or
“default” floating point semantics

 1n default mode, floating point values on the
operand stack may have extended exponents

* does not preclude adding more comprehensive
IEEE 754 support in the future

* to be completely predictable, need guidelines for
compiling Java to JVM

26

Variable elimination

« Will b be represented as a variable in the class file?

double a;

double Db;

b=2.0 * a;

a = 0.25 * Db;
}

 the computation involving b could be done entirely on the
operand stack

 the operand stack can use extended exponent range while
variables cannot [1 different answers can result

* unknown range much less harmful than unknown precision

27

Shaping the Future of Java and JVM

« IEEE 754 capabilities were designed for a mass market
« Java is striving for a mass market

« IEEE 754 would benefit programmers

e Sun should add IEEE 754 support to Java

 adding IEEE 754 features need not compromise other
aspects of Java

« need to get sticky flag and rounding mode support in the VM
and IEEE 754 semantics into the language

« Support will not be added without the insistence and guidance
of the programming community

« Disaster was averted, to help build something better,
get involved!

28

Acknowledgments

Borneo was designed with the help of William Kahan
and Alex Aiken.

Students 1n the spring 1997 offering of UCB CS 279
also helped design Borneo and write the early
specification. Borneo has benefited from the
feedback of various readers included Gregory
Tarsy’s floating point group at Sun and several
Berkeley CS graduate students.

29

References and Related Work

* Jerome Coonen, “A Note On Java Numerics,” January 25, 1997, Numeric
Interest Mailing List, http://www.validgh.com/.

» Jerome Coonen, “A Proposal for RealJava, Draft 1.0,” July 4 1997, Numeric
Interest Mailing List.

e C9X,http://www.dkuug.dk/JTC1/SC22/WG14/.

« J. Demmel and X. L1, “Faster Numerical Algorithms via Exception Handling,”
IEEE Transactions on Computers, vol. 43, no. 8, August 1994, pp. 983-992.

* Roger A. Golliver, “First-implementation artifacts in Java™”,

» James Gosling, The Evolution of Numerical Computing in Java,
http://java.sun.com/people/jag/FP.html.

* “Making Java Work for High-End Computing,” Java Grande Forum,
http://www.javagrande.org/, also
http://math.nist.gov/javanumerics/.

* Tim Lindholm and Frank Yellin, The Java™ Virtual Machine Specification,
Addison-Wesley, 1996.

* “Proposal for Extension of Java™ Floating Point Semantics, Revision 1,” May

1998, stale URL http://java.sun.com/feedback/fp.html.
30

Self-promotion

For more information on Borneo: : T ’fﬁ '
http://www.cs.berkeley.edu/~darcy/Borneo & Jﬁi_f:;‘
For a discussion of Java’s floating point support: -
How Java’s Floating-Point Hurts Everyone Everywhere

Professor William Kahan and Joseph D. Darcy
http://www.cs.berkeley.edu/~wkahan/JAVAhurt .pdf

For a critique of PEJFPS:
http://www.cs.berkeley.edu/~darcy/Research/jgrande.ps.gz

Lively discussions of PEJFPS are archived at
http://www.validgh.com/Jjava

For these slides:
http://www.cs.berkeley.edu/~darcy/Research/cascon.ps.gz

Comments? email: darcy@cs.berkeley.edu
31

