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1.

(a)

(b) The full major axis of the asteroid’s orbit, from looking at the picture, is equal to the Earth-Sun

distance plus the Venus-Sun distance, or 1.72 AU. The semi-major axis is half this, or 0.76 AU .

(c)
P 2 = A3

P = A3/2 = (0.76)3/2 years

P = 0.66 years

2. From the parallaxes, we have distances:

dA =
1

0.10
pc = 10 pc

dB =
1

0.025
pc = 40 pc

We are also given a brightness ratio:
BB = 2 BA

What we’re looking for is luminosities. B is farther, but B is also brighter— so we’d better come out
with B being more luminous! We expect a ratio LA/LB < 1.

We have distances, and we have brightnesses. We have distances and brightnesses, and know how to
relate all that to luminosities:

B =
L

4π d2

Specifically, we have:

BA =
LA

4π dA
2

BB =
LB

4π dB
2

What we want is a luminosity ratio, so solve each of these for luminosity:

LA = 4π dA
2 BA LB = 4π dB

2 BB

To get the ratio, divide those two puppies:

LA

LB
=

4π dA
2 BA

4π dB
2 BB

LA

LB
=

(

dA

dB

)2 (

BA

BB

)

1



LA

LB
=

(

10 pc

40 pc

)2(

1

2

)

LA

LB
= 1

32

This does come out with B more luminous, as expected.

3. (a) The planets would go flying off away from the solar system into space, each continuing in the
straight-line path in the direction that it was moving at the moment when the Sun vanished.

(b) They would continue in exactly the same orbits. The gravitational force depends on the mass
of the two objects and the distance between them. The mass at the center of the Solar System
is still the same, 1 M¯. The fact that it’s a black hole rather than a G-type main sequence star
doesn’t change what the mass is, and thus doesn’t change the gravitational effect on the planets.

4. (a)
λ f = c

f =
c

λ

f =
3.00× 108 m s−1

6563× 10−10 m

f = 4.57× 1014 s−1

(b)
E = h f

E = (6.626× 10−34 J s)(4.57× 1014 s−1

E = 3.03× 10−19 J

(c)

(120 J)

(

1 photon

3.03× 10−19 J

)

3.96× 1020 photons

(d)
λobs − λemit

λemit

=
v

c

In this case, λemit is 6563Å. We need to find λobs:

λobs − λemit = (fracvc) (λemit)

λobs = λemit

(

1 +
v

c

)

We know c in m/s, not mph, so we have to convert:

c = 3.00× 108
m

s

(

0.62 mi

1, 000 m

) (

3, 600 s

1 h

)

c = 6.70× 108 mph

Now we can figure out the Doppler shifted wavelength. Note that the velocity we have is negative

in this equation, because the ball is approaching us. We should get a blueshift, or a wavelength
which is less than 6563Å.

λobs = (6563 Å)

(

1 +
−90 mph

6.70× 108 mph

)

λobs = 6563Å

Is that a blueshift? Hard to say to this precision! 90mph is so bloody much less than the speed
of light that it’s very difficult to see the blueshfit at all.
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5. (a)

(b) The line of sight direction from the hot continuum (blackbody) high-density source to you goes
through the low density cloud. This part of the low density cloud will absorb some of the abundant
photons from the high-density emitting source. Because the low-density cloud is moving towards

you, you will get a blueshifted absorption line.

Meanwhile, the parts of the cloud off to the side also absorb some of the light from the continuum
source in the middle. However, this is not along your line of sight, so you don’t see that absorption
line. The atoms are excited by the continuum source, and when they jump back down to the
ground state they will emit photons in all directions. . . some of which will be towards you. Because
this gas on the sides of the expanding cloud isn’t moving towards or away from you, you will see
this emitted light as an unshifted emission line.

Because the absorbed light on the side gets emitted in all directions, and only a little bit of that
is towards you, you might expect the strength of the emission component of the P-Cygni profile
to be weaker than that of the absorption component, as shown in the problem statement.

6. This one’s a little bit hard. It’s tempting to say “everyting else is the same, so the colors must be the
same.” While this is the right answer, it’s an oversimplified explanation.

If the angular sizes are the same, then what you really know is that the size-to-distance ratio for the
two stars is the same:

R1

d1

=
R2

d2

You also know the brightnesses are the same:

B1 = B2

So you know:
L1

4π d1
2

=
L2

4π d2
2

But you don’t know how L1 and L2 compare, since you don’t directly know how R1 and R2 compare.

What we’re really after is temperatures, which relates to luminosity and size (two other things we’ve
talked about) through:

L = 4π R2 σ T 4

Solve this for temperature, since it’s what we care about:

T 4 =
L

4π σ R2
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To see how the temperatures of the two stars compare, divide their temperatures; if T1 > T2, we’ll
know that Star 1 is bluer. If you can’t figure out how the temperatures compare, then you can’t say
anything about colors!

(

T1

T2

)4

=

L1

4π σ R1
2

L2

4π σ R2
2

(

T1

T2

)4

=

(

L1

4π σ R1
2

)(

4π σ R2
2

L2

)

(

T1

T2

)4

=

(

L1

L2

) (

R2

R1

)2

Hmm. We don’t know the luminosity relationship, so it would seem we’re stuck. Aha! We’ve got
another relationship between luminosity and distance above from the brightnesses being equal; we can
turn that into a ratio of luminosities with a little algebra:

L1

L2

=
4π d1

2

4π d2
2

L1

L2

=

(

d1

d2

)2

OK. It’s not clear that that helped, since we also don’t know the distances. . . but we do know something
about radii and distances together, from the angular sizes, so perhaps we’ve made progress. Let’s try
putting that in our temperature ratio equation:

(

T1

T2

)4

=

(

d1

d2

)2 (

R2

R1

)2

Hey! Now we’re making progress:
(

T1

T2

)4

=

(

R2/d2

R1/d1

)2

But we already know that R2/d2 = R1/d1, so now we have that T1/T2 = 1, or T1 = T2. So we know
the color of the stars is the same!

Be very careful though. We do not know that which star, if either, is more luminous, nor do we know
which star is more distant! They could be at the same distance; or, one could be a yellow supergiant,
whereas the other is a yellow main sequence star that’s much closer (thereby balancing the angular
size from being physically smaller and the brightness from being less luminous).

If you get a problem like this and don’t know immediately how to do it, don’t just freeze up and write
down random equations. Explain what you know and what you need to figure out. If you’re thinking
along the right lines, you may get some partial credit. Also, by explaining that to yourself, you may
actually be able to guide yourself through figuring out what it is that you need to do.

7. (a)

λmax =
2.9 × 107 Å K

T
=

2.9× 107 Å K

1500 K

So:

T =
2.9× 107 Å K

λmax

=
2.9 × 107 Å K

1500 Å

T = 19, 000 K

A star of a temperature like that is an O or a B star.

(a) Same calculation, on you get T = 3,700K . This is a K-type star.
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(c) From the parallaxes, we know:

dA =
1

0.0080
pc = 125 pc

dB =
1

0.080
pc = 12.5 pc

We also have
BA = BB

So we know:
LA

4π dA
2

=
LB

4π dB
2

Solve this for the ratio of luminosities:

LA

LB
=

4π dA
2

4π dB
2

LA

LB
=

(

dA

dB

)2

=

(

125 pc

12.5 pc

)

LA/LB = 100

Sanity check: B is much closer, but has the same brightness as A, so B is dimmer. Good, that
matches with what we got.

(d) If Star A is a main sequence B star, then just looking at where those stars fall on the H-R diagram,
we can conclude that its luminosity is a bit less than 100 L¯. Therefore, the luminosity of Star B
is a bit less than 1 L¯, from problem C. Star B is a K-type star; a K-type star that’s of luminosity
a bit less than 1 L¯ is much closer to the main sequence than it is to the giant branch, so it’s

probably a main sequence star .
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