
Astro 102 Review Problem Set #5

Solutions

1. If we find out that the supernova was hidden behind dust, then we realize that we have
overestimated the distance to the supernova. That means we’ve overestimated the
lookback time. We measured the redshift right, so we calculated a certain amount of
expansion in more time than was right. That’s a slower expansion rate, and therefore
we’ve underestimated the expansion rate of the Universe.

2. The Hubble Time tH is the expansion timescale for the expansion. For the Universe
to expand by 1% of its current size, it will take 1% of the Hubble Time, or 0.01 tH =
138 million years.

If you would rather do this with equations, you can say exactly the same thing as the
previous paragraph with:

∆t

tH
= z =

∆R

R0

Where R0 is the “size of the Universe” (e.g. the average distance between galaxies)
now and ∆R is the change in the size. Thus, we have:

∆t

tH
=

0.01 R0

R0

∆t = 0.01 tH

Giving us the same answer of 138 million years.

3. (a) Recall that the observed brightness is proportional to luminosity divided by dis-
tance squared:

B =
L

4π d2

Here, we have two objects: the Supernova, and Vega. We know that BSN =
1.6 × 10−7 BV , so:

BSN =
LSN

4π dSN
2

= 1.6 × 10−7 BV = 1.6 × 10−7
LV

4π dV
2

We know LSN , LV , and dV , so we can solve the equation:

LSN

4π dSN
2

= 1.6 × 10−7
LV

4π dV
2

Cross multiply:

LSN (4π) dV
2 = 1.6 × 10−7 LV (4π) dSN
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This gives ups:

dSN = dV

√

(

1

1.6 × 10−7

) (

LSN

LV

)

Now we can plug in:

dSN = (7.76 pc

√

√

√

√

(

1

1.6 × 10−7

)

(

5.8 × 109 L⊙

130 L⊙

)

dSN = 1.3 × 108 pc = 130 Mpc

(b) Use the expanding Universe equation:

z =
d

c tH

We want tH , and we know everything else, so solve:

tH =
d

c z

You will save yourself some conversion if you use c = 1 lyr/yr instead of the usual
m/s value. Then only one conversion is needed, 1 pc = 3.26 yr.

tH =

(

1.3 × 108 pc

(1 lyr yr−1) (0.062)

) (

3.26 lyr

1 pc

)

tH = 6.8 × 109 yr = 6.8 billion years

This is not the real value for our Universe, of course. . . .

(c) The distance to this galaxy in light-years is (130Mpc)(3.26 lyr/1 pc) = 420 Mlyr.
That means that the lookback time is 420 million years. That means that the first
explosion happened 420 million years ago; if the second explosion happened 200
million years after that, it happened 220 million years ago . Of course, if we’ve
just seen the first supernova, we won’t see the second supernova for another 200
million years. (In reality, there will probably be lots of supernovae in this galaxy
in between. Type Ia supernovae happen about once every 500 years in a big
galaxy like ours.)

4. (a) Remember that cosmological redshift is the result of the fact that the wavelength
of light expands at the same rate as the Universe; as such,

1 + z =
Size Now

Size Then

Therefore the size of the universe then divided by the size of the Universe now is
1/1101 = 0.00091. (A little less than one-thousandth the size.)
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(b) If the linear size was 0.00091 the size now, the volume was (0.00091)3 = 7.5 ×

10−10 times the volume now.

Density is mass divided by volume. Since dark matter is just matter, it isn’t
created or destroyed, so in a given region of the Universe, the mass of the dark
matter was the same as it is now, but the volume of that region was 7.5 × 10−10

what it is now. As such, the density was 1/7.5×10−10 = 1.3×109 what it is now.

Multiply that by the current density, and you get a density of 3.2 × 10−21 g/cm3 .

(Notice that while we refer to the Universe as “high density” at the time of the
emission of the CMB, it’s only in comparison to the Universe today; it’s still very

low density compared to the atmosphere of the Earth!

(c) Your first instinct is probably to repeat the calculation of the previous prob-
lem. . . but remember that vacuum energy has the property that its density is

constant. If you have twice as much vacuum, you have twice as much vacuum
energy.

As such, the density of Dark Energy back then was 6.7 × 10−30 g/cm3 . Back

then, the Dark Energy density was much less than the Dark Matter density!

One day I will figure out if I’m always supposed to capitalize Dark Matter.

(d) Here, we can repeat the calculation from (b). The density of normal matter was

be 1.3×109 what it is now, or 6.5 × 10−22 g/cm3 . Notice that the ratio of normal

matter to dark matter stays the same (about 1/5).

(e)

Here’s how I figured this out. First, dDM0 is today’s density of dark matter. Dark
matter should be going up as the size of the Universe cubed (since that’s how
volume goes). Thus, when the Universe was 1/4 today’s size, the density should
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have been 43 = 64 times higher. Dark Energy, meanwhile, has a constant density;
today’s Dark Energy density is about three times today’s Dark Matter density.

(f)

5. The right answer is (c). There are two things to notice. First, the galaxies are getting
farther apart, but they are not expanding themselves. Second, there was more ex-
pansion between the second and third times than between the first and second times;
that’s an accelerating expansion.

6. Here’s the plot. Discussion is below.
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(b) Note that for z = 0.067, we have 1/(1 + z) = 0.94. The lookback time for this
galaxy is 1 billion years.

(c) The lookback time is easy: it’s 2 billion years. For the redshift, consider that the
light took twice as long to reach us from this galaxy as it did from the galaxy in
(b). As such, the Universe will have expanded twice as much, giving us z = 0.134.
From that, we can figure out 1/(1 + z) = 0.88.

(d) Extrapolating a line that far is always hard— you can get quite a variation in
where it intersects while still going pretty well through the points— but it looks
like we should get a tH of about 15 billion years.

If we calculate a tH from the data above, we get:

z =
d

c tH

tH =
d

c z
=

1 × 109 lyr

(1 lyr/yr) (0.067)

Here, I’ve put in the data for the galaxy of (b), and have used the most convenient
form of c. That gives us tH = 14.9 billion years for this problem, or really 15
billion years given the number of sig figs we have.

(j) tH is obviously lower 6 billion years in the past as compared to today. It is also

lower than the tH we would have calculated in (f) (which would have been 9 billion
years— can you explain why?).

(second h) If we’re on the decelerating Universe, then it’s clear that we always have
tU < tH . However, looking at the plot, you see that 6 billion years ago, tU/tH
was bigger (that is, tH was a closer approximation of tU) than it is today. In a
decelerating Universe, the ratio tU/tH gets ever slower (that is, tH goes up faster
than the age of the Universe as a result of the deceleration).

(In a Universe with constant expansion rate, tH and tU go up at the same rate;
can you explain why?)

Our real Universe is accelerating now, and was decelerating in the past, so the
relationship between tH and tU is more complicated.
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