
Astronomy 102, Spring 2003

Solutions to Review Problems from 2003 February 5

1. Chapter 4, Question 12 in the text: Imagine you are riding in a car, tuned in to 790 on the AM
radio dial. This station is broadcasting at a requency of 790 kilohertz (7 .9 × 10 5 Hz). What is the
wavelength of the radio signal? You switch to the FM station at 98.3 on your dial. This station is
broadcasting at a frequency of 98.3 megahertz (9 .83 × 10 7 Hz). What is the wavelength of this radio
signal?

The basic equation here is λf = c, where λ is the wavelength, f is the frequency, and c is the
speed of light (3.00 × 108 m/s). Thus, to find wavelength, we solve this to λ = c/f . Recall that
1 Hz = 1 s−1 = 1/1 s.

3.00× 108 m s−1

7.9 × 105 s−1
= 380 m

3.00× 108 m s−1

9.83× 107s−1
= 3.05 m

2. Chatper 4, Question 15 in the text: Refer to Question 13 in Chapter 3 about the hypothetical planet
named Vulcan. If such a planet existed in an orbit 1/4 the size of Mercury’s, what would be the averate
temperature on Vulcan’s surface? Assume that the averate temperature on Mercury’s surface is 450K.

(Not to be confused with Mr. Spock’s Vulcan....) Refer to the equation in class we derived for thermal
equilibrium of a planet around a class:

L�

4πd2
πR2

p(1 − a) = 4πR2

pσT 4

where L� is the luminosity of the sun, d is the distance of the planet from the Sun, Rp is the radius
of the planet, a is the albedo of the planet, and T is the average surface temperature of the planet.
That looks like a lot of letters, but you can understand it if you break it down and ask what each
piece means. The left side tells you the rate at which the planet is heating up by absorbing the Sun’s
rays. L�/(4πd2) is the flux of the Sun’s light at the planet, a distance d from the Sun. πR2

p is the
cross-sectional area of the planet, like the aperture of yoru telescope, that tells you how much of that
flux the planet is intercepting. Finally (1− a) is the fraction of the energy that gets absorbed (since a
is the fraction that gets reflected). On the right side, you have the rate that the planet is cooling off
because it’s radiating. σT 4 tells you the rate at which one square meter of an object at temperature
T radiates energy, and 4πR2

p is the total surface area of the planet (i.e. the total number of square
meters that are radiating). At thermal equilibrium, the left and right sides are the same: the rate the
planet is heating up must be the same as the rate at which it is cooling off. (If they weren’t the same,
then the temperature would either go up or go down.)

Take this equation, and divide both sides by 4πR2

p, and you get:

L�

16πσd2
(1 − a) = T 4

If you know T 4, you can take a square root twice to get T . Now, we could look up L�. We don’t know
d, but we could figure it out by looking up the orbit of Mercury and dividing by 4. Finally, we can
look up σ, which is just the Steffan-Boltzman constant and always has the same value. That would
give us everything we need to know to plug in and calculate T.

However, consider another approach. We know what T is for Mercury, and we know that the two planets
(Mercury and the fictitious Vulcan) are both orbiting the same Sun. So write down the equation, using
dV as the distance from the Sun to Vulcan, and dM as the distance from the Sun to Mercury, and
divide the two equations by each other:
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Cancel out all the stuff that appears on both the top and the bottom; for simplicity, let’s assume that
aV = aM , so we can cancel the (1 − a) terms:

d2

M

d2

V

=
T 4

V

T 4

M

That starts to look very simple. Rewrite this as:

(

dM

dV

)2

=

(

TV
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)4

Take the square root of both sides, twice, and you get:

√

dM

dV

=
TV

TM

Since dM = 4dV , and
√

4 = 2, we know that TV /TM = 2, so therefore TV = 900K . Note that if you
came out with an answer that had a temperature less than Mercury’s you should be suspicious: Vulcan
is closer to the Sun than Mercury! It always pays to look at the end and make sure your answer makes
sense with what is obvious.

3. Chatper 4, Question 16 in the text: Oops! I also assigned this as homework on homework set #2.
Wait for that to see the soultion.

4. Stars similar to the Sun, late in their life, turn redder in color; however, they also become much more
luminous (emit more total energy per second). From just this information and what you know of
thermal (blackbody) radiation, what can you conclude about the nature of these stars late in their life?

You know from blackbody radiation that objects which are redder emit less energy per square meter—
that is, if you have two objects which are of the same size, the redder one emits less energy per second.
Therefore, if stars get redder late in life, but also get more luminious, they must also be getting larger,
that is, their radius (and therefore volume and, most importantly, surface area) must increase.

5. (a) The Sun is 93 million miles away. How far back in time are we looking when we observe the sun?

(b) The Andromeda Galaxy (a nearby large galaxy) is 0.8 Mpc (that’s 0.8 megaparsecs, or 800,000
parsecs) away. How far back in time are we looking when we observe the Andromeda Galaxy?

(a)

93× 106mi

(

1.609× 103 m

1 mi

)

= 1.50× 1011 m

We know the distance, and we know the speed (the speed of light). Divide distance by speed to
get time; if you forget which way to divide it, just do the way that gets the units right:

1.50× 1011 m

3.00× 108 m s−1
= 500 s = 8.3 m

(Bringing up the memory of exam 1. . . .)

(b) This is the same conversion, only you need to know that 1 pc = 3.26 light−years = 3.09×1016 m.
Thus, the distance to the Andromeda Galaxy is:

0.8 × 106 pc

(

3.09× 1016 m

1 pc

)

= 2.47× 1022 m
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(I’m keeping more sig figs than I will quote in the final answer, just so I don’t lose precision in
the calculations.) As before:

2.47× 1022 m

3.00× 108 m s−1
= 8.2 × 1013 s = 2.6 million years

The Andromeda Galaxy is the most distant object you can readily see with your naked eye (i.e.
without binoculars or a telescope). You can’t see it from a light-polluted area like downtown
Nashville, but it’s not too hard to see if you get under a good, dark sky. It’s in the constellation
Andromeda (unsurprisingly), though is easier to find starting with the Great Square of Pegasus.
You can find it (labelled “M31”) on your SC001 star chart. It’s best to look for this object in the
late fall or early winter, as that’s when it’s high in the evening sky. Right now (mid-February),
it sets not too long after the sun. If you do find this galaxy, and regard it with your naked eye,
realize that you’re not seeing the galaxy as it is now, but rather as it was neary 3 million years
ago. (What were you doing 3 million years ago?)

6. [More challenging] Astronomers use the term absolute magnitude to describe the magnitude of a
star as it would be observed from a distance of 10pc, and distance modulus to describe the difference
in magnitude between the star as observed and its absolute magnitude. Remembering the definition of
magnitude as

m = −2.5 log

(

f

f0

)

where f is the flux of a star, and f0 is a constant, what would be the distance modulus of a star which
is 1kpc away?

This one requires remembering how to play with logs. However, you can get started even if you don’t
remember how to do that. Where to begin? Well, we’re looking at the flux of objects observed at
different distances. Where have we talked about flux and distance relating to each other? Recall (or
look up in your notes) that the observed flux of an object is

f =
L

4πd2

where L is the luminosity of the object (total energy radiated per second) and d is the distance to the
object. If you have two stars of the same luminosity (L1 = L2; since they’re the same let’s just call it
L), but one is at distance d1 and the other is at distance d2, the ratio of their fluxes is:

f1

f2

=

L
4πd2

1

L
4πd2

2

(Why take a ratio of the fluxes? Well, we’re trying to compare the brightnesses of two stars, and
generally with fluxes that means taking the ratio of how bright one is to the other. It also helps to
remember that a difference of magnitudes (log fluxes) corresponds to a ratio of fluxes. Since we’re
eventually going after a difference of magnituces, we should expect that a ratio of fluxes may come
into it at some point.) Cancelling out the things that appear on both the top and the bottom of the
right side:

f1

f2

=
d2

2

d2

1

=

(

d2

d1

)2

For the problem in question, we want to know the difference in magnitude between a star at 10pc and
1kpc. Thus, it makes sense to set d2 = 10pc and d1 = 1000pc (because 1kpc=1000pc). This tells us:

f1

f2

=

(

10

1000

)2

= 10−4
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How are we going to get a magnitude out of this? Well, notice in the magnitude equation above that
f is divided by f0. To make our equation look more like this, let’s divide both the top and bottom of
the left side by f0:

f1/f0

f2/f0

= 10−4

Take a log of both sides:

log

(

f1/f0

f2/f0

)

= −4

where I’ve used the fact that log(10x) = x on the right side. On the left side, you need to know (or
look up) that log(x/y) = log(x) − log(y), so we have:

log

(

f1

f0

)

− log

(

f2

f0

)

= −4

Now multiply both sides by -2.5, and we have;

−2.5 log

(

f1

f0

)

− −2.5 log

(

f2

f0

)

= 10

Aha! Now this looks just like the magnitude equation, so we have:

m1 − m2 = 10

That’s exactly what we are looking for; since we set d2 = 10 pc, m2 is the magnitude of the object at
10pc; similarly, m1 is the magnitude of the object at 1kpc. The distance modulus is the difference in
the magnitude measured by an observer at the real distance and a hypothetical observer at 10pc, so

what we have calculated here is exactly the answer: the distance modulus for 1kpc is 10 . Note that

that is just “10”– there are no units on magnitudes. Notice also that the difference is positive, i.e.
m1 > m2, or the magnitude of a star observed at 1kpc (m1) is greater than the magnitude of a star
observed at 10pc (m2). Remember that greater magnitudes indicate fainter objects. You expect the
further object to be fainter, so the fact we got a positive difference makes sense.

This problem is more mathematically involved than anything I would ask on a test; however, it is
useful to be able to follow what was done. Except for needing to take the log identity as given, you
should be able to understand and perform each step.
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