
1. Answer: (f). No statement is correct. Hopefully most are obvious; the only “trick” is
(e), because, yeah, you can only see most stars at night, but the Sun is a star and you
sure see that thing in the day.

2. Answer: (e).

3. Answer: (b). That’s how you can get a color. Some of the other answers can give her
a partial answer, but she’d still need something else. (Except for f, which just requires
a lot of budget.)

4. Answer: (c).

5. Answer: (c).

6. Ansewr: (e). All of the above could potentially explain why the star is dim.

7. Answer: (a) is the only one which must be true. (b), (c), and (d) are all definitely
false. (e) might be true, but that “must” in there rules it out. (We know nothing
about how far away the two stars are just from the fact that we’re observing red and
blue photons.)

8. Answer: (b).

9. (a)
λf = c

f =
c

λ
=

3.00× 108 m/s

0.21 m

f = 1.4× 109 Hz

The only tricky thing about htis is making sure your units are right, i.e. divide by
the wavelenght in meters (to be consistent with your speed in meters per second),
not in centimeters.

(b)

E = hf = (6.626× 10−34
J

Hz
)(1.4× 109Hz)

E = 9.5× 10−25 J

(c) Repeat (a) and (b) for a λ = 4500 Å photon. Or, just remember

E =
hc

λ

E21cm

Eblue

=
hc

21 cm

hc

4500 Å

E21cm

Eblue

=
4500 Å

21 cm
=

4500× 10−9 m

0.21 m
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E21cm

Eblue

= 2.1× 10−5

9. (the other one)

d =
1

p

Where d is in pc and p is in arcseconds. This is easy to solve for p:

p =
1

d

p =
1

0.8× 106 pc

p = 1.3× 10−6 arcseconds

That’s not very much.

10. (a) You can start by resorting to equations. Or, you can remember that for two stars
of the same temperature, it’s their surface area that determines the ratio of the
luminosities. If one has twice the radius of the other, then it has four times the
luminosity. . . and you’re done. If you’d rather resort to equations, the one that
tells you the luminosity of a star given its temperature and size is:

LA = (σTA
4)(4πRA

2)

LB = (σTB
4)(4πRB

2)

We also have TA = TB and RA = 2RB. Divide the two equations above:

LA

LB

=
(σTA

4)(4πRA
2)

(σTB
4)(4πRB

2)

Cancel out the stuff that’s the same on the top and the bottom. . . including the
temperature, since TA = TB.

LA

LB

=
RA

2

RB
2

LA

LB

=
2RB

2

RB
2

LA

LB

= 4

2



(b) Here, we don’t need to remember anything about temperature or radius. How
bright somethign appears (i.e. its flux) depends on its luminosity (which we’ve
already figured out) and distance:

FA =
LA

4πdA
2

FB =
LB

4πdB
2

Cross multiply each equation to get:

FA(4πdA
2) = LA

FB(4πdB
2) = LB

(Note that if you didn’t think the trick of cross multiplying was obvious, the usual
trick of dividing the two equations would have worked, it would just have taken
one extra step.)

Now divide the two:

FA

FB

4πdA
2

4πdB
2

=
LA

LB

We have LA/LB from the previous part, and since FA = FB, that first fraction
cancels out. Divide the 4π’s away, and we’re left with:

dA
2

dB
2

= 4

dA

dB

= 2

Does this make sense? Both appear equally bright, so the one which is more
luminous must be further away. Yes, we got that star A is further away, so at
least we’re going in the right direction!

11. First of all, the two stars are similar in many ways. The stars the same distance apart.
However, one has a longer period, which means that the stars are moving slower. It
takes more force to hold an object moving faster into a circular orbit of a given size.
The way you get more force between two objects of a given separation is to make those
objects more massive. Therefore the system which is orbiting faster (has a shorter

period) must have more mass, or System B has more mass .

The Other Half of 11. (Yeah, there was a number missing in there.)

We can’t measure smaller angles. So, we have to figure out a way of measuring more
distant objects by measuring the same angles we can measure now. Remember that,
given the small angle formula, the parallax formula told us that the angle we measured
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was the ratio between the Earth-Sun distance (1 AU) and the distance to the star.
Aha! For the same angle, to measure a more distant star, we just need to move the
Earth further from the Sun!

Well, OK, without budgetary constraints, you might just do that. It’s a lot cheaper
(though still expensive) to build a spacecraft you send out into the outer solar system,
far from earth, to orbit the Sun and measure parallaxes with that longer baseline.
(You’d have to wait longer, though; while it takes the Earth but a year to go around
the Sun, things further away take longer.)

12. (a) No! Remember, it’s the directness of the Sunlight, primarily (with the length
of the day as a secondary effect) that makes the difference between summer and
winter. . . and what’s more, when it’s summer here, it’s winter in the Southern
Hemisphere and vice versa! Thus, there never is a time when it’s “winter on
Earth”. What’s the problem then? If we’re always the same distance from the
Sun, why don’t we always have the same surface temperature? Well, remem-
ber that our thermal equilibrium considerations only gave us the average surface
temperature.

(b) No! Same reason as above.

13. You might think that you need the Steffan-Boltzman constant in order to solve this
problem. . . and indeed you could use it if you had it. However, it’s also possible to
solve it just by comparing the white dwarf to the Sun. You’ll need the radius of the
Earth and the Sun to do that as well as the temperature of the Sun, though, so no
matter what I had darn well better have given you something on the front of the test

LWD = (σTWD
4)(4πRE

2)

L� = (σT�
4)(4πR�

2)

We want the ratio, so divide them:

LWD

L�

=
(σTWD

4)(4πRE
2)

(σT�
4)(4πRE

2)

LWD

L�

=

(

TWD

T�

)4 (

RE

R�

)2

Some numbers from the front of the test:

T� = 5780 K

RE = 6.4× 106 m

R� = 7.0× 108 m

Stick ’em in:
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LWD

L�

=
(

10, 000

5780

)4
(

6.4× 106

7.0× 108

)2

(All units have nicely cancelled)

LWD

L�

= 7.5× 10−4

Even though it’s rather hot, it’s an awful lot smaller than the Sun, making our white
dwarf not very luminous.
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