
Astronomy 102, Summer 2006

Review Exam 2 Solutions

1.

(a)

(b) The angle p is small (2′′ is a small angle), so we can use the formula:

p =
h

d

In this case, we know h (it’s 1,000 km, or half of the baseline between Nashville and Arizona),
and we want to find d, so we solve this equation:

d =
h

p

To use this equation, though, we have to convert p from arcseconds to radians:

p = (2′′) ×

1 radian

206, 265′′
= 9.7 × 10−6 radians

If we plug in this minimum angle we can measure, we’ll get the maximum d we can measure.
(Any d lower than that would give us a bigger angle, which would only be easier to measure with
our precision.) This will give us d in km (the same units as we have h in).

d =
1, 000 km

9.7 × 10−6

d = 1 × 108 km

For purposes of comparison, convert this to AU:

d = 1.03 × 108 km ×

(

1AU

1.496 × 108 km

)

= 0.7AU

(c) This is much larger than the distance from the Earth to the Moon, and is comparable to the
distance from the Earth to the Sun.



(d) You will want it to be as high in the sky as it gets. If it’s near rising or setting, the triangle will
be “squished”, giving you a smaller angle. Ideally, you want it to be just past its highest point
in the sky as viewed from Nashville, and just before its highest point in the sky as viewed from
Arizona, so that it’s nicely positioned up between the two as drawn. Anywhere else, and you’ll
have to do some trig to take into account the “squished” triangle.

2. This one’s a little bit hard. It’s tempting to say “everyting else is the same, so the colors must be the
same.” While this is the right answer, it’s an oversimplified explanation.

If the angular sizes are the same, then what you really know is that the size-to-distance ratio for the
two stars is the same:

R1

d1

=
R2

d2

You also know the brightnesses are the same:

B1 = B2

So you know:
L1

4π d1
2

=
L2

4π d2
2

But you don’t know how L1 and L2 compare, since you don’t directly know how R1 and R2 compare.

What we’re really after is temperatures, which relates to luminosity and size (two other things we’ve
talked about) through:

L = 4π R2 σ T 4

Solve this for temperature, since it’s what we care about:

T 4 =
L

4π σ R2

To see how the temperatures of the two stars compare, divide their temperatures; if T1 > T2, we’ll
know that Star 1 is bluer. If you can’t figure out how the temperatures compare, then you can’t say
anything about colors!

(

T1

T2

)4

=

L1

4π σ R1
2

L2

4π σ R2
2

(

T1

T2

)4

=

(

L1

4π σ R1
2

) (

4π σ R2
2

L2

)

(

T1

T2

)4

=

(

L1

L2

) (

R2

R1

)2

Hmm. We don’t know the luminosity relationship, so it would seem we’re stuck. Aha! We’ve got
another relationship between luminosity and distance above from the brightnesses being equal; we can
turn that into a ratio of luminosities with a little algebra:

L1

L2

=
4π d1

2

4π d2
2

L1

L2

=

(

d1

d2

)2

OK. It’s not clear that that helped, since we also don’t know the distances. . . but we do know something
about radii and distances together, from the angular sizes, so perhaps we’ve made progress. Let’s try
putting that in our temperature ratio equation:

(

T1

T2

)4

=

(

d1

d2

)2 (

R2

R1

)2

2



Hey! Now we’re making progress:
(

T1

T2

)4

=

(

R2/d2

R1/d1

)2

But we already know that R2/d2 = R1/d1, so now we have that T1/T2 = 1, or T1 = T2. So we know
the color of the stars is the same!

Be very careful though. We do not know that which star, if either, is more luminous, nor do we know
which star is more distant! They could be at the same distance; or, one could be a yellow supergiant,
whereas the other is a yellow main sequence star that’s much closer (thereby balancing the angular
size from being physically smaller and the brightness from being less luminous).

If you get a problem like this and don’t know immediately how to do it, don’t just freeze up and write
down random equations. Explain what you know and what you need to figure out. If you’re thinking
along the right lines, you may get some partial credit. Also, by explaining that to yourself, you may
actually be able to guide yourself through figuring out what it is that you need to do.

3. (a)

λmax =
2.9 × 107 ÅK

T
=

2.9 × 107 ÅK

1500K

So:

T =
2.9 × 107 ÅK

λmax

=
2.9 × 107 ÅK

1500 Å

T = 19, 000K

A star of a temperature like that is an O or a B star.

(a) Same calculation, on you get T = 3,700 K . This is a K-type star.

(c) From the parallaxes, we know:

dA =
1

0.0080
pc = 125 pc

dB =
1

0.080
pc = 12.5 pc

We also have
BA = BB

So we know:
LA

4π dA
2

=
LB

4π dB
2

Solve this for the ratio of luminosities:

LA

LB

=
4π dA

2

4π dB
2

LA

LB

=

(

dA

dB

)2

=

(

125 pc

12.5 pc

)

LA/LB = 100

Sanity check: B is much closer, but has the same brightness as A, so B is dimmer. Good, that
matches with what we got.

(d) If Star A is a main sequence B star, then just looking at where those stars fall on the H-R diagram,
we can conclude that its luminosity is a bit less than 100 L⊙. Therefore, the luminosity of Star B
is a bit less than 1 L⊙, from problem C. Star B is a K-type star; a K-type star that’s of luminosity
a bit less than 1 L⊙ is much closer to the main sequence than it is to the giant branch, so it’s

probably a main sequence star .
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4.

(a)

d =
1

p

so. . .

p =
1

d

when d is in pc and p is in arcsec. We can then figure out that the parallax of the Andromeda
Galaxy would be:

p =
1

800, 000

′′

= 1.25 × 10−6′′

(or 1 × 10−6′′, one millionth of an arcsecond, to one significant figure). You would need to measure
parallax at least this well to measure the distance to the Andromeda Galaxy, ideally a factor of
five or ten better. The best we can do right now with parallax is about 10−3′′, so this is not how
we know the distance to M31.

(b) When I’ve given this on a test, may people noted that 30 AU is insignificant in comparison to
800,000 pc, so Neptune is not appreciably closer to M31 than Earth is. This is correct, but in so
saying you are implicitly assuming a “flat Earth” model, where everything is “up”. The planets
are up, the stars are farther up. . . . The real Universe, of course, is three-dimensional, and Neptune
may not even be in the same direction as M31! In fact, it may be every so very slightly farther
from Neptune to M31 than from Earth; it all depends on where Neptune is in it’s orbit. And, even
if all three were lined up, the difference might be 31 AU rather than 29 AU. More likely, they’re
off at some different angle, and you’d have to do a bunch of messy trig to find out the difference
in the distance. Ultimately, though, it doesn’t matter, since only have the M31 distance to one
significant figure, and any difference is going to be way, way, way less than that. . . so the distance
from Neptune to M31 is 800,000 pc.

This does not mean, however, that you’d need to measure angles to the same precision! Think
about how parallax works. You look at something from two points of view, and measure the
difference in the direction from one point of view to the other. Neptune’s orbit is 30 times the
size of Earth’s orbit, so there’s going to be a much bigger parallax as measured from Neptune! In
fact, it will be 30 times bigger, so you only need to measure angles to:

(30)(1.25 × 10−6) = 4 × 10−5′′

This still isn’t good enough to get Andromeda (if we can only measure to a milliarcsecond), but
we are doing better than we did on Earth.

(c) The disadvantage is that Neptune’s orbital period is much longer than Earth’s. Therefore, you’d
have to wait a very long time (about 80 years) to get from one side of Neptune’s orbit to another.
NOTE! I know that this semester, we have not talked about how long it takes planets to go
around the Sun, so don’t worry about it if you didn’t know this part of the problem.

In the past, students have suggested handing the project off between generations of a way of
getting around the disadvantage. This isn’t getting around the disadvantage; this is accepting it.

Note that the important thing about parallax is getting the measurements from two points of
view. So why wait? If you can afford to send a space station out to Neptune, you might well be
able to send out one in the opposite direction to the other side of Neptune’s orbit. Make you’re
measurements and compare data, and you’re done all at once. Or, you can do half as well if you
compare measurements from Neptune with measurements made on Earth, and save yourself the
expense of sending out a second space station.

5. From the parallaxes, we have distances:

dA =
1

0.10
pc = 10 pc
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dB =
1

0.025
pc = 40 pc

We are also given a brightness ratio:
BB = 2BA

What we’re looking for is luminosities. B is farther, but B is also brighter— so we’d better come out
with B being more luminous! We expect a ratio LA/LB < 1.

We have distances, and we have brightnesses. We have distances and brightnesses, and know how to
relate all that to luminosities:

B =
L

4π d2

Specifically, we have:

BA =
LA

4π dA
2

BB =
LB

4π dB
2

What we want is a luminosity ratio, so solve each of these for luminosity:

LA = 4π dA
2 BA LB = 4π dB

2 BB

To get the ratio, divide those two puppies:

LA

LB

=
4π dA

2 BA

4π dB
2 BB

LA

LB

=

(

dA

dB

)2 (

BA

BB

)

LA

LB

=

(

10 pc

40 pc

)2 (

1

2

)

LA

LB
= 1

32

This does come out with B more luminous, as expected.

6. The first Cepheid variable star’s distance can be determined easily from the parallax:

dC1 =
1

p
=

1

0.022

dC1 = 45.45 pc

(I am keeping “too many” sig figs, since I’ll use this number in subsequent calculations.)

The second Cepheid variable star is dimmer, but also farther. It has the same period, though, so it
must have the same luminosity as the first Cepheid. (This is what makes Cepheids useful!)

B =
L

4π d2

L = 4π d2 B

LC1 = LC2

4π dC1
2 BC1 = 4π dC2

2 BC2

dC2 = dC1

√

BC1

BC2

dC2 = 45.45 pc

√

3.4 × 10−11

1.1 × 10−21
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dC2 = 8.00 × 106 pc = 8.00Mpc

That is a reasonable distance for a “nearby” galaxy (galaxies tend to be a few Mpc apart).

The first Type Ia supernova is 8.00 Mpc away, of course, since it’s in the same galaxy as the first
Cepheid! We can do the same thing as above to figure out the ratio of distances between the two
supernovae; remember that supernovae are standard candles.

LS1 = LS1

4π dS1
2 BS1 = 4π dS2

2 BS2

dS2 = dS1

√

BS1

BS2

dS2 = 8.00Mpc,

√

1.5 × 10−15

1.3 × 10−19

dS2 = 860Mpc = 8.6 × 106 pc

7. When the cluster stars, there are no white dwarfs or neutron stars, because those stars are the endpoints
of star lifetimes. . . and no stars have been through their lifetime first! Neutron stars are left behind
from the deaths of the most massive stars, so they will start to build up first, because the most massive
stars have the shortest lifetimes. After a few times ten million years, all of the massive stars will have
died, and after that the number of neutron stars will remain constant. (We have the ones we’ve made,
but no more get made.) At that point, the number of white dwarfs stars to build up, and only keeps
building up as lower and lower mass stars are able to go through their lifetimes.
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