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1.

d = z c tH

d = 0.021

(

1
lyr

yr

)

(13.8 × 109 yr)

d = 2.9 × 108 lyr = 290 million light years = 89 Mpc

2. If we define tLB as the lookback time, we need tLB = 250×106 yr = 0.25 billion years.

z =
d

c

tH
=

tLB

tH

since d is the distance the light has to travel, and c is the speed the light is going.

z =
0.25 Gyr

13.8 Gyr

I use the tLB in billions of years so that the units will cancel. Recall that z is just a
number, and shouldn’t have units.

z = 0.018

Nuts! VV114 is just a bit too far away.

3. (a) Recall that 1+z is the current size divided by the size when the light was emitted.
We need 1 + z = 3, so z = 2 .

(b) We have

1 + z =
λobs

λemit

λobs = (1 + z) λemit

λobs = (3) (4861 Å)

14580 Å = 1.458 µm

(c) This is in the infrared region of the spectrum. (In fact, it’s in the near-infrared.
This is the region I was applying for time to look at VV114 with the Gemini
telescope, but I got turned down. Am I bitter? Noooo....)



(d) The neutron star to white dwarf ratio will be higher. We’re looking at a galaxy
when it is very young — the lookback time is a lot, approaching the age of the
Universe. (In fact, the lookback time is 11.5 billion years, but I wouldn’t expect
you to be able to figure that out.) There will be some white dwarfs in this galaxy,
since the most massive star that makes a white dwarf (8M⊙) only lives a few times
10 million years, so there has been time to start making white dwarfs. However,
in our galaxy, we’ve been able to turn stars that live as long as 10 billion years
into white dwarfs, whereas this distant galaxy will only be able to turn stars that
live up to 2 billion years into white dwarfs. Shorter lived and less massive stars
rae more common, so there is a greater pool of possible “white dwarf progenitors”
in our Galaxy than there is in this galaxy seen earlier in the Universe’s history.

Note that our Galaxy will have, in an absolute sense, more neutron stars, since
it’s been making high mass stars all along that have turned into neutron stars.
However, the difference is greater for white dwarfs, because there has been more
time to allow the more common, lower mass stars to go through their lives.

4. We want the redshift of the second galaxy. We could use the Hubble Law to find this
if we knew the distance. We don’t, however.

We do have the redshift of the first galaxy, so we can find that galaxy’s distance.
What’s more, we have a 10-day period Cepheid variable in each galaxy; because they
have the same period, the two Cepheid variables have the same luminosity. As such,
we know:

LC1 = LC2

BC1 4π dC1
2 = BC2 4π dC2

2

dC2 = dC1

√

BC1

BC2

We also know that dC1 = zC1 c tH , so we have:

dC2 = zC1 c tH

√

BC1

BC2

What we really want, though is zC2, but now we have dC2 in terms of stuff we know,
we can use the Hubble Law:

zC2 =
dC2

c tH

zC2 =
zC1 c tH

c tH

√

BC1

BC2

zC2 = zC1

√

BC1

BC2

Notice that we don’t need to know tH at all!
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zC2 = 0.001

√

100

1

zC2 = 0.01

5. Here’s how I’m going to approach this. The Hubble Time is what characterizes the
expansion rate of the Universe. So, let’s first calculate the Hubble time that we would
find from each Galaxy, and then compare them to each other.

For the first galaxy, we have:

z =
d

c tH

which gives us

tH =
d

c z
=

550 Mlyr

(1 lyr yr−1) (0.04)
= 13.75 Gyr

Hmm, 13.8 billion years. . . sounds like the instructor chose his numbers wisely here,
eh? Note above that I just used the distance of 550Mlyr based on the fact that the
lookback time is 550Myr.

Right-o. Second galaxy. This one’s harder, since we don’t have a distance, but since a
Type Ia supernova is a standard candle, we can use it to figure out the distance:

LSN1 = LSN2

BSN1 4π dSN1
2 = BSN2 4π dSN2

2

dSN2 = dSN1

√

BSN1

BSN2

dSN2 = 550 Mlyr
√

4

dSN2 = 1, 100 Mlyr

Now we can calculate an expansion rate (given by tH) for the second galaxy:

tH =
d

c z
=

1, 100 Mly4

(1 lyr yr−1) (0.08)
= 13.75 Gyr

Hmm, same thing. No difference in the expansion rate when we look over the last
1,100 milion years and when we look over the last 550 years.

Next galaxy:

LSN1 = LSN3

BSN1 4π dSN1
2 = BSN3 4π dSN3

2

dSN3 = dSN1

√

BSN1

BSN3
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dSN3 = 550 Mlyr

√

1

0.0625

dSN3 = 2, 200 Mlyr

Now we can calculate an expansion rate (given by tH) for the third galaxy:

tH =
d

c z
=

2, 200 Mly4

(1 lyr yr−1) (0.18)
= 12.2 Gyr

Hey! This is different! So is the Universe speeding up or slowing down?

If you think about it, a lower tH implies a faster expansion. Recall that tH can be
interpreted as the amount of time it would take the size of the Universe to double if
the expansion rate stays constant. If that time is lower, then the expansion rate must
be faster.

Looking at the amount of expansion in the last 2.2 billion years, we get a faster ex-
pansion rate than we do looking at the amount of expansion only over the last 0.5–1
billion years. This tells us that the expansion of the Universe is slowing down .

Note that the numbers in this problem are not real. The expansion of the Universe is
in fact speeding up. What’s more, the acceleration of the Universe is so small that it
is impossible to see with the precision we can measure out to redshifts less than about
0.2. As such, the huge effect given in this problem is not only in the wrong directon,
but a vast exaggeration of what is really seen.

6. Recall that if the expansion rate has been constant, then tH is the age of the Universe.
To figure this out, remember that:

change in size

starting size
=

t

tH

(This is the standard “doubling time” rate equation.) If we pick some distant galxay
whose distance right now is d, we need the change in distance to be −d. Then we
will get the time (which will be negative, since we’re looking in the past) that the two
galaxies were arbitrarily close together — that’s the Big Bang.

−d

d
=

t

tH

t = −tH

So, if the expansion rate has been constant, then tH is the age of the Universe.

However, if the expansion has been slowing down, then it was faster in the past. This
means that we got to where we are now in less time than we would have if the expansion
rate had been constant. (Consider an analogy: a car is currently going 60 mph, and
has gone 120 miles. If, however, it was going 90 mph for the first 60 miles, did it take
the car more than, equal to, or less than 2 hours to complete the trip?)

If the Universe has only decelerated, it’s always been the current rate or faster. In this
case, then the actual age of the Universe would be less than the Hubble Time.
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