Astro 260
 Group Problems \#9
 2005-April-16

The Flat Robertson-Walker Metric:

$$
\begin{gathered}
d s^{2}=-d t^{2}+a^{2}(t)\left(d x^{2}+d y^{2}+d z^{2}\right) \\
d s^{2}=-d t^{2}+a^{2}(t)\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right)
\end{gathered}
$$

1. In this problem, you will develop expressions for the coordinate distance and the lookback time to an object who is at comoving distance r away from us.
(a) Consider a flat Universe which has two components in it: cold matter and vacuum energy. The density (in units of critical density) of these two components today are Ω_{M} and Ω_{Λ}. (The book uses Ω_{v} for vacuum, but Ω_{Λ} is slightly more standard notation.) The critical density is

$$
\rho_{c}=\frac{3 H_{0}^{2}}{8 \pi}
$$

where H_{0} is the present expansion rate of the Universe.
Write down ρ_{M} and ρ_{Λ} (which are both potentially functions of time) in terms of $\Omega_{\mathrm{M}}, \Omega_{\Lambda}, H_{0}$, and a (the scale factor).
(b) Consider the Friedmann Eqation for the flat Universe:

$$
\dot{a}^{2}-\frac{8 \pi \rho}{3} a^{2}=0
$$

Rewrite the Friedmann equation as a differential equation between z and t, where z is the cosmological redshift: $(1+z)=a_{0} / a(z)$, where $a_{0}=a\left(t_{0}\right)$ is the scale factor today (assume $a_{0}=1$), and $a(z)$ is the scale factor when light was emitted by an object that we observe to have redshift z.
(c) Show that the lookback time to an object at redshift z (that is, the amount of Robertson-Walker time t that has elapsed in between the emission and detection of light from an object whose redshift we observe to be z) has the value:

$$
t_{0}-t_{\mathrm{emit}}=\int_{0}^{z} \frac{-d z}{H_{0}(1+z)\left[\Omega_{\Lambda}+\Omega_{\mathrm{M}}(1+z)^{3}\right]^{1 / 2}}
$$

I hope you can understand my sloppiness with z; if not, then replace z with z^{\prime} everywhere inside the integral, and replace $d z$ with $d z^{\prime}$, and then it all makes sense.
(d) Write down a similar expression for r, the coordinate distance to that object. (Hint: consider $d r / d t$ for a photon travelling from there to here.)
(e) What is the physical distance from us to the emitting galaxy holding t constant at $t=t_{0}$?
(f) What is the physical distance from us to the emitting galaxy holding t constant at $t=t_{\text {emit }}$? (Your answer should be in terms of $z, H_{0}, \Omega_{\mathrm{M}}$, and Ω_{Λ}.)
2. Cosmological Time Dilation: Consider the situation below:

A distant galaxy of measured redshift z emits a photon at time $t_{\text {emit }}+d t_{\text {emit }}$ (when it has redshift $z+d z_{\text {emit }}$), and another one at time $t_{\text {emit }}$ (when it has redshift z). We detect the first photon at time $t_{0}+d t_{0}$ (note: both $d t_{\text {emit }}$ and $d t_{0}$ are negative), and the second photon now (at time t_{0}). We can be said to have had a redshift $d z_{0}$ at the detection of the first photon, as the scale factor was slightly below 1 then, as shown.
(a) Write down an expression for $d z_{\mathrm{emit}} / d z_{0}$ in terms fo $H_{0}, z, \Omega_{\mathrm{M}}$, and Ω_{Λ}. This should not be an integral expression! Hint: both photons travel the same coordinate distance! You developed that expression for the second photon in the previous problem. Hint 2: Remember that:

$$
\int_{x_{0}}^{x_{0}+\Delta x} f(x) d x \simeq f\left(x_{0}\right) \Delta x
$$

for small Δx small.
(b) Develop an expression for $d t_{0} / d t_{\text {emit }}$ in terms of $H_{0}, z, \Omega_{\mathrm{M}}$, and Ω_{Λ}. This should not be an integral expression! This problem may be a little tricky. Hint: If you can work out an expression in terms of $d z_{0}$ and $d z_{\text {emit }}$, you can use part (a) to get rid of one of the two. You can also work out an expression just between $d z_{0}$ and $d t_{0}$, if you think about it.
3. Luminosity Distance: We define luminosity distance d_{L} such that:

$$
F=\frac{L}{4 \pi d_{L}{ }^{2}}
$$

where L is the luminosity of an emitting object, and F is the detected flux (energy per time per area). In a euclidean geometry where nothing is expanding, d_{L} is exactly the same as regular distance.
(a) If L is the luminosity of the emitting object, what is $d N / d t^{\prime}$, the number of photons emitted by that object in its own proper time $d t^{\prime}$? (For simplicitly, assume all the photons are of the same frequency.)
(b) If the object is at coordinate distance r, what is A, the area of the sphere over which the photons emitted at the same time as the ones we detect from the object are spread?
(c) Write down an expression for $\frac{d N}{d A d t}$, where $d N$ is the number of photons emitted by a distance source in its proper time $d t^{\prime}$ and $d t$ is the amount of time it takes us to detect those photons. Your expression should be in terms of L, ω^{\prime} (the frequency of the emitted photons), and r.
(d) Write down an expression for $\frac{d E}{d A d t}$, the flux we detect, in terms of the quantities from (c) and ω, the detected photon frequency.
(e) Convert your expression in (d) to an expression in terms of $z, \Omega_{\mathrm{M}}, \Omega_{\Lambda}$, and H_{0}. This is the standard luminosity distance formula. By measuring F and z for a lot of objects of known L, we can fit the values of the parameters $H_{0}, \Omega_{\mathrm{M}}$, and Ω_{Λ} to this curve.

