
1

Pipes
Discrete Event Simulator 
Implementation in Java

Razvan Surdulescu
CS380n, Spring 2003

mailto:surdules@cs.utexas.edu
mailto:surdules@cs.utexas.edu


2

Part 2

Low-Level Design
Results

Challenges
Future Work



3

Low-Level Design

Design areas
Simulation

How do you simulate transactions going 
through a system?

Statistics
How do you simulate different statistical 
distributions?
How do you gather and compute performance 
measures?



4

Low-Level Design

Design areas
Architecture

How do you build a DES in an extensible 
manner?



5

Low-Level Design cont’d

Simulation design
Event based simulation

Events are characterized by:
Transaction ID (unique), transaction category, 
transaction priority
Time
State (E(ntering), D(equeued), L(eaving))
Widget



6

Low-Level Design cont’d

ID=3
State=E
Widget=CPU
Time=15

Queue Processor

CPU

ID=3
State=D
Widget=CPU
Time=22

ID=3
State=L
Widget=CPU
Time=27

Free?

X Y

ID=3
State=E
Widget=Y
Time=27

ID=3
State=L
Widget=X
Time=15

Busy?



7

Low-Level Design cont’d

Simulation design cont’d
Events queue

Events are ordered by “Time”

Simulator controls
Start(): starts the simulation
Step(): performs one step in the simulation
End(): ends the simulation



8

Low-Level Design cont’d

Simulation design cont’d
Start()

Reset all the statistics measures on the model
Creates the transactions for all Sink nodes
Each transaction is represented by an event in 
(state=E, time=0)
All events are added to the queue



9

Low-Level Design cont’d
Simulation design cont’d

Step()
Remove the event at the top of the global 
queue
Advance it via the owner node: each node 
advances events differently
A node could temporarily remove an event 
from the global queue and store it in the node 
queue (for example, if the node is busy 
processing another event)



10

Low-Level Design cont’d
Simulation design cont’d

Step() example: Service node
If current event state = E or state = D

If the node is busy processing another event, remove 
current event from the global queue and store it in the 
node queue
Otherwise mark node as busy, create a new event with 
(time = node processing time, state = L)

If current event state = L
Mark node as free, move events from the node queue into 
the global queue
Pick the appropriate outgoing arc and create a new event 
with (state = E, widget = neighbor)



11

Low-Level Design cont’d

Simulation design cont’d
End()

Compute all the statistics measures on the 
model



12

Low-Level Design cont’d
Statistics design

Supported distributions
Fixed(a) = a
Uniform(a,b) = uniform distribution in the interval [a, b)
Normal(a,b) = normal distribution with mean a and stdev
b
Negative Exponential(a): negative exponential 
distribution with mean 1/a
Poisson(a): Poisson distribution with parameter a
Erlang(a,b): Erlang distribution with mean 1/a and stdev
1/(a* sqrt(b))



13

Low-Level Design cont’d
Performance gathering

Each node advances events
In the process of advancing an event (e.g. from state=E 
to state=L), it reports performance events

Each node has 0 or more statlets (a performance 
event listener)

There is one type of statlet for each supported 
performance measure (arrival rate, population, queue 
population, utilization, response rate, response time)



14

Low-Level Design cont’d

CPU

Utilization Statlet

Population Statlet

Response Time Statlet
Arrive

ID=3
State=E
Widget=CPU
Time=15 ID=3

State=E
Widget=CPU
Time=15

ID=3
State=L
Widget=CPU
Time=15

WorkLeave



15

Low-Level Design cont’d

Performance computation
Population queue statlet example

Listen to “enqueue”, “dequeue”, “end”
Keep a population count
On “enqueue”, increase population count, store 
pair (event time, current population)
On “dequeue” decrease population count, store 
pair (event time, current population)
All pairs are ordered by event time



16

Low-Level Design cont’d

Performance computation cont’d
Population queue statlet example cont’d

To compute the average queue size, let sum = 
0, iterate over all stored pairs
sum = sum + (prevPair.population * 
(currPair.time - prevPair.time))

Return (sum / totalTime)



17

Low-Level Design cont’d
Extensible design

MVC pattern used to separate model from UI
Model can be automated without having a UI

Widget template
Base Widget class defines common node features
Derived Widget classes define

Default name
Number and position of Connectors
How to advance an event through this widget



18

Low-Level Design cont’d

Extensible design cont’d
Widget template cont’d

Derived Widget classes specialize
The customizable properties of the widget

The property list is displayed in a form for the 
user to modify

The Visitor entry point
Widgets are saved and loaded via a Visitor

For Widgets with a queue, specify how to select an 
event from the widget queue



19

Low-Level Design cont’d

Extensible design cont’d
Statlets

Covered in previous slides

Automation
Models can be created and executed 
programmatically



20

Demo
Automation: the car wash problem source

Model model = new Model();

WidgetSource cars = new WidgetSource(model);
cars.setName("Cars");
cars.setDistributionName(Distributions.NEGATIVEEXPONENTIAL);
cars.setDistributionValueA(11);
cars.setNumberOfTransactions(2000);
model.addWidget(cars);
...
Simulator simulator = new Simulator(model);

simulator.start();
while (!simulator.isFinished()) {

simulator.step();
}
simulator.end();

System.out.println(allocate.getStatistics());



21

Demo
Automation: the car wash problem 
output

C:\>java –classpath Pipes.jar;... edu.utexas.cs.surdules.pipes.demo.CarWashProblem
Statistics for widget 'Allocate':
QueuePopulationStatlet: 

sum=104596.49964194975,end=21779.64605225117,average=4.802488497334351
ResponseTimeStatlet: count=2000,think=104596.49964194951,average=52.29824982097476



22

Results
Simulation accuracy

Pipes produces accurate results
Comparable to Workbench for similar models

Software quality
Pipes is extensible, versatile and small
Pipes has a modern UI and an interoperable file-
format

Didactic effectiveness
I got a pretty solid grasp of DES concepts



23

Challenges
DES approach

Event based vs. time based vs. mix?
Widget and Statlet set

What is a minimal, useful set of Widgets 
and Statlets for modeling interesting 
problems?

Software design
Extensible and easy to understand



24

Future Work
Add Widget types

Transaction fork, Transaction join, Loop
Add Widget features

Polling queuing priority
Round robin time rule

Add statlets
Queue response, Quantity
Compute standard deviation, variance



25

Questions, Comments?


	PipesDiscrete Event Simulator Implementation in Java
	Part 2
	Low-Level Design
	Low-Level Design
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Demo
	Demo
	Results
	Challenges
	Future Work
	Questions, Comments?

