Pipes
Discrete Event Simulator
' Implementation in Java

Razvan Surdulescu
CS380n, Spring 2003



mailto:surdules@cs.utexas.edu
mailto:surdules@cs.utexas.edu

!'_ Part 2

Low-Level Design
Results
Challenges
Future Work




i Low-Level Design

= Design areas

= Simulation
= How do you simulate transactions going
through a system?
» Statistics

=« How do you simulate different statistical
distributions?

= How do you gather and compute performance
measures?



‘_H Low-Level Design

= Design areas

= Architecture

=« How do you build a DES in an extensible
manner?




‘_H Low-Level Design cont'd

= Simulation design

= Event based simulation

« Events are characterized by:

Transaction ID (unique), transaction category,
transaction priority

Time
State (E(ntering), D(equeued), L(eaving))
Widget



* Low-Level Design cont'd

Queue Processor —
O

> -
O
) o CPU o)
State=E
ID=3 Widget=CPU
State=L Time=15 :> ID=3 State=E

ID=3
Widget=X State=L Widget=Y
. ID=3 i Time=27
Time=15 Widget=CPU 1me=
State=D Time=27
Widget=CPU
Time=22



‘_H Low-Level Design cont'd

= Simulation design cont’d

= Events queue
= Events are ordered by “Time”

=« Simulator controls
« Start(): starts the simulation
= Step(): performs one step in the simulation
= End(): ends the simulation



‘_H Low-Level Design cont'd

= Simulation design cont’d

= Start()
= Reset all the statistics measures on the model
= Creates the transactions for all Sink nodes

= Each transaction is represented by an event in
(state=E, time=0)

= All events are added to the queue



i Low-Level Design cont'd

= Simulation design cont’d
= Step()

= Remove the event at the top of the global
queue

= Advance it via the owner node: each node
advances events differently

= A node could temporarily remove an event
from the global queue and store it in the node
queue (for example, if the node is busy
processing another event)



Low-Level Design cont'd

= Simulation design cont’d

» Step() example: Service node

« If current event state = E or state = D

If the node is busy processing another event, remove
current event from the global queue and store it in the
node queue

Otherwise mark node as busy, create a new event with
(time = node processing time, state = L)
= If current event state = L

Mark node as free, move events from the node queue into
the global queue

Pick the appropriate outgoing arc and create a new event
with (state = E, widget = neighbor)

10



‘_H Low-Level Design cont'd

= Simulation design cont’d
= End()

« Compute all the statistics measures on the
model

11



Level Design cont'd

‘_H Low-

= Statistics design
= Supported distributions

Fixed(a) = a
Uniform(a,b) = uniform distribution in the interval [a, b)

Normal(a,b) = normal distribution with mean a and stdev
b

Negative Exponential(a): negative exponential
distribution with mean 1/a

Poisson(a): Poisson distribution with parameter a

Erlang(a,b): Erlang distribution with mean 1/a and stdev
1/(a* sqrt(b))

12



Low-Level Design cont'd

= Performance gathering

= Each node advances events
= In the process of advancing an event (e.g. from state=E
to state=L), it reports performance events
=« Each node has 0 or more statlets (a performance
event listener)

= There is one type of statlet for each supported
performance measure (arrival rate, population, queue
population, utilization, response rate, response time)

13



Low-Level Design cont'd

J

e

~

Utilization Statlet

Population Statlet

Response Time Statlet

/

oo
=)

ID=3 CPU ID=3
State=E State=L
Widget=CPU

>

=)

Widget=CP
Time=15 D=3 Timeg=15 v
State=E
Widget=CPU
Time=15

14



i Low-Level Design cont'd

= Performance computation

= Population queue statlet example
= Listen to “enqueue”, “"dequeue”, “end”
= Keep a population count

= On “enqueue”, increase population count, store
pair (event time, current population)

= On “dequeue” decrease population count, store
pair (event time, current population)

= All pairs are ordered by event time

15



‘_H Low-Level Design cont'd

= Performance computation cont’d

= Population queue statlet example cont'd

= TO compute the average queue size, let sum =
0, iterate over all stored pairs

= sSum = sum + (prevPair.population *
(currPair.time - prevPailir.time))

« Return (sum / totalTime)

16



Low-Level Design cont'd

= Extensible design

= MVC pattern used to separate model from UI
= Model can be automated without having a UI

=« Widget template
= Base Widget class defines common node features

= Derived Widget classes define
Default name
Number and position of Connectors
How to advance an event through this widget

17



Low-Level Design cont'd

= Extensible design cont'd

=« Widget template cont'd

= Derived Widget classes specialize
The customizable properties of the widget

The property list is displayed in a form for the
user to modify

The Visitor entry point
Widgets are saved and loaded via a Visitor

For Widgets with a queue, specify how to select an
event from the widget queue

18



‘_H Low-Level Design cont'd

= Extensible design cont'd
« Statlets
= Covered in previous slides

= Automation

= Models can be created and executed
programmatically

19



‘_H Demo

= Automation: the car wash problem source

Model model = new Model () ;

WidgetSource cars = new WidgetSource (model) ;

cars.setName ("Cars") ;
cars.setDistributionName (Distributions .NEGATIVEEXPONENTIAL) ;
cars.setDistributionValueA (11) ;
cars.setNumberOfTransactions (2000) ;

model .addWidget (cars) ;
Simulator simulator = new Simulator (model) ;

simulator.start () ;
while (!simulator.isFinished()) {
simulator.step();

}

simulator.end() ;

System.out.println(allocate.getStatistics());



‘_H Demo

= Automation: the car wash problem
output

C:\>java —-classpath Pipes.jar;... edu.utexas.cs.surdules.pipes.demo.CarWashProblem
Statistics for widget 'Allocate':

QueuePopulationStatlet:
sum=104596.49964194975,end=21779.64605225117, average=4.802488497334351

ResponseTimeStatlet: count=2000,think=104596.49964194951, average=52.29824982097476

21



i Results

= Simulation accuracy

= Pipes produces accurate results
« Comparable to Workbench for similar models

= Software quality
= Pipes is extensible, versatile and small

= Pipes has a modern UI and an interoperable file-
format

= Didactic effectiveness
= I got a pretty solid grasp of DES concepts

22



i Challenges

= DES approach
s Event based vs. time based vs. mix?

= Widget and Statlet set

= What is a minimal, useful set of Widgets
and Statlets for modeling interesting
problems?

= Software design
= Extensible and easy to understand

23



i Future Work

= Add Widget types
= Transaction fork, Transaction join, Loop

= Add Widget features
= Polling queuing priority
= Round robin time rule
= Add statlets

= Queue response, Quantity
» Compute standard deviation, variance

24



* Questions, Comments?

25



	PipesDiscrete Event Simulator Implementation in Java
	Part 2
	Low-Level Design
	Low-Level Design
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Low-Level Design cont’d
	Demo
	Demo
	Results
	Challenges
	Future Work
	Questions, Comments?

