Please note: This article is meant to be a resource to printmakers and other interested people. Permission to reproduce this article is hereby granted as long as my name, Stephen McMillan, stays on it in all forms of reproduction. | |||||
The, "Aquatint Class", section has a step-by-step example for the print, "Petaluma Oaks".. | |||||
MORE ROSIN!
This article relates some of my experience with aquatint and is meant to help you get the results you want with aquatint. It is written for the experienced etcher. It assumes knowledge of basic etching procedures including plate preparation, studio safety, and intaglio printing.
the knowledge of a few simple determining factors an artist can choose precisely what kind of aquatint to use for the etching. The most important factors in creating an aquatint are: the amount and grain size of rosin on the plate, the degree of melting of the rosin onto the plate, and the amount of time the plate is acid-etched.
little rosin on the plate. To counter this it can be useful to put more rosin onto the plate than you think is needed. It was through intentionally "over-rosining" that I found out about very dense, and ultra dense aquatints, which I have used in a number of prints. Whether doing a hand dropped, box dropped, or even spray can aquatint, it is vital that an adequate amount of the surface of the plate be protected from the acid during the etch. Once too much of the surface has been etched away it is very difficult to repair the damage short of scraping, burnishing and starting over. It is therefore crucial that enough rosin get on the plate. My own rule of thumb is to drop at least enough rosin onto the plate to obscure the metal when viewed from about 30 degrees up from the plate. For fine-grained rosin the coverage should appear even heavier since the grains are smaller and will spread out less when melted onto the plate.
individual grains of rosin. Some rosins are pre-ground and will have nothing but fine grains. These rosins are excellent for fine-grained aquatints but can be problematical for coarser ones. Hand-ground lump rosin, whether used in an aquatint box or hand dropped, allows for a much greater range of grain sizes. The variably sized grains of rosin will fall at different rates in a box, thus giving you some control over what size of rosin will settle onto the plate. After the rosin has been raised in the box, the larger, heavier rosin grains fall first, while the finer grains float down much more slowly. To get coarser grains the plate is put onto the box soon after the rosin is raised. If only larger rosin grains are wanted, the plate should be removed after about a minute in the box. To get finer grains the plate should go into the box anywhere from 15 seconds to more than a minute after the rosin is raised, depending on how fine a rosin grain is desired. Since much of the rosin will have dropped before the plate is in the box, the plate may have to be put into the box a two or three times before there is enough rosin on it. In most cases it is not necessary to try to isolate a narrow range of rosin grain sizes. I usually place a plate in the box a few seconds after the dust is raised and then leave it in for at least 10 minutes.
particular box you are using. A good box should deposit enough rosin after one time in the box, but unfortunately some require that two or more drops be done before heating the plate. If a box does not deposit enough rosin it is also possible that the box needs more rosin to be ground and added to it. Some boxes require more vigorous cranking than others and so may just need more strength from you. If you are working with an unfamiliar box it is advisable to do a few test aquatints to get a sense of how that one works. I have learned a lot through doing test plates. In a relatively short period of time you can try many rosining and heating variations, while developing a feel for the process. DIAGRAM OF ROSIN MELTED ONTO THE PLATE
and rate of application determine how the rosin will melt. Enough heat must be applied to at least melt the grains until they are hemispheres stuck onto the plate. Under-heated rosin will not adhere to the plate well and will therefore not protect enough of the plate. When lump rosin melts the first thing to look for is the change from dry amber-colored dust into wet transparent dots. It is easiest to see this transition happening by viewing the plate from a very low angle. A small magnifying lens is a useful tool in seeing how the melting is progressing, particularly with a fine-grained aquatint. It takes a bit of practice to find the best angle and lighting to see the rosin on the plate. I use the hand lens on a Swiss Army knife. A geologist's 10X hand lens or a jeweler's loupe also works well. For the fine-grained aquatints the plate should be heated gradually, with only enough to just melt the grains onto the plate.
at about 200 to 250 to melt fine grain lump rosin onto a plate. Different rosins melt at different temperatures, so you may need to experiment. Place the rosined plate onto a sheet, or several sheets, of paper on the hot plate. I use about four layers of heavy paper bag type paper. This will help avoid hot spots and will make it easier to move the plate when needed. The rosin may not melt evenly, so be ready to move and gently tip the plate to get the heat were you want it. Uneven heating can be a real problem with larger plates, especially if they are larger than the hot plate. If available, a gas flame wand works well for larger plates. There must also be a raised screen of some sort to set the plate on while the flame is moved under it. Another alternative to a gas flame is an alcohol soaked cotton ball in a frying pan. Be sure to have a tight fitting lid to extinguish the flame! When using a gas flame wand or alcohol to heat the plate, particular care must be taken to gradually heat the plate if a fine grained aquatint is desired. This method can melt rosin so fast that the small grains melt together. As more heat is applied, the grains spread, becoming larger and covering more of the metal. The resulting aquatint is grainier and denser. If you start with larger grains on the plate they will tend to spread out more than the fine grains. In either case, the addition of heat will cause the rosin to continue to spread, coalesce, and cover more metal. It is possible to overheat the rosin and totally cover the plate. The smoother the surface of a plate, the less likely it is that an aquatint will totally cover it. Conversely, on a rougher plate, such as a previously etched aquatint, it is much easier to over melt the rosin. A rougher surface tends to draw the liquid rosin out while a polished surface will hold it at bay. It is surprising how much rosin and heat can be applied to a plate without totally over-melting it. To produce a very dense highly textual aquatint I use a gas flame wand to really fry a heavily rosined polished plate until it looks very wet and shiny, and gives off smoke. I might not have found out how to do this if I had not tried to over-rosin and overheat test plates. One caught fire and yet still produced an interesting aquatint!
etched in Dutch Mordant. The mixture I use is 25 parts water, five parts hydrochloric acid, one part potassium chlorate crystals, and at least several parts old Dutch Mordant. If old acid is not available a scrap of copper can be put into the acid for an hour or so. A common acid mixture for zinc is 12 parts water to one part nitric acid. 12 to one nitric etches zinc about three to four times faster than Dutch Mordant etches copper. The etch times needed to create a full tonal range over an aquatint depends on the grain size of the aquatint, and the percent of metal exposed. A very fine-grained aquatint could over-etch after only 10 minutes in Dutch Mordant while a very dense aquatint could be etched 10 hours. The smaller the grain of an aquatint, the faster the acid will etch under the rosin. Even though Dutch Mordant tends to etch down it still will undercut the rosin given enough time. As the grain size increases so does the maximum etch time possible. The percent of metal covered also makes a large difference. Light coverage will over-etch quickly while heavy coverage can be etched much longer. A very dense aquatint can be etched for several hours in Dutch mordant, and yet still leave enough original surface remaining for another aquatint to be dropped onto. At the lighter end of the scale, a very fine-grained, medium dense aquatint may need to be etched only 10 seconds to produce a light tone while a coarse grain, very dense aquatint may need 10 minutes for a light tone. Given the large variation of etch time in relation to tone produced it is advisable to make test plates to help in determining what etch time produces what tone over a particular grain and density of aquatint.
account if the temperature in the studio changes much. Longer times may be needed when using colder acid, and shorter times for that hot summer day. I have not done any quantitative tests with acid temperature, but would guess that etch times change by a factor of about two every 10 to 15 degrees Celsius. This is only a guess. In Summer my acid is about 21 degrees, and in winter it gets down to about 14 degrees. In Winter I generally etch about one half time longer.
useful in determining how close the aquatint is to being etched to the maximum depth, short of over etching, and ruining the plate. It is very important to maintain visual contact with the aquatint, both when putting it onto the plate and when etching it into the plate. Much of your success with aquatint depends on knowing what looks right. As you develop your skills with aquatint you will learn what to look for, both with the lens and with unaided eyes.
material is used to paint out areas of the plate between etches, usually starting with a paint-out before any etching is done and progressing tone by tone to a dark, deeply etched tone. I have always used asphaltum thinned some with kerosene or mineral spirits as the stop-out, though there are a number of other stop-out materials available.
use a burnisher to draw in the lighter tones. One advantage of this is that the pre-etched plate can be worked on far from the studio, even in the wilderness. A burnished aquatint can be proofed at any time during the drawing process since the rosin and acid have already done their job. Although the resultant print will look somewhat like a mezzotint it does have a distinct quality of its own. Some prints done this way are: Easy Chair, Lake of the Woods, Leaf Rhythms, and Reflections and Carp.
the acid to gradually move up the surface of the aquatinted plate. For short creep etches the plate can be gradually lowered into the acid. For longer creep etches the acid tray is blocked up to a gradual slope, the plate placed on the slope, and then acid is slowly poured into the tray. A long creep over a very dense aquatint can last well over an hour. I go into more detail on this in my article, "Creep Etch".
as enough of the original surface remains after the previous etches, a plate can be re-aquatinted and re-etched. Use a hand lens to inspect the areas to be re-etched. If less than 20 percent of the original surface remains, an additional aquatint is very likely to over-etch quickly. Only 20 percent is already on the fragile side. With 40 percent or more the plate should hold up to further etching.
The etched-in texture already on the plate causes the rosin to spread out faster when it is heated, making it easier to over-melt the rosin on the plate. The etched-in texture also makes it more difficult to see how well the new aquatint is melting, and if it is adequately covering the plate. This will definitely test your hand lens skills. Another possible problem is that on a variably etched plate the rosin may spread out at different rates over different textures. That is, it may be sparse on un-etched areas, but rather dense over well etched areas. This is much more likely to be a problem with a second aquatint over a fine grain aquatint because the finer texture will make the rosin spread more that a coarser one will. Generally when doing multiple aquatints the coarser grained aquatints are done first, and the finer ones last. This way the smaller grains of the fine grain aquatint rest on top of the larger "mesas" left by the previously etched coarse aquatint. Additional aquatints are usually etched much less than the first one, both because of the smaller grain size, and because less of the original surface remains to be etched. An image can be gradually built up, using a number of aquatints, and other etching techniques. The only limit is your imagination and patience. Always remember to wear your industrial dust and acid fume masks when you work with these noxious chemicals! Stephen McMillan © 1993 (revised 2000) |
|||||